Automatic Classification for Grouping Designs in Fashion Design Recommendation Agent System

  • Kyung-Yong Jung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)


Nowadays, users spend much time and effort in finding the best suitable designs since more and more information is placed on-line. To save their time and effort in searching the designs they want, the user-adapting recommendation system is required. In this paper, Automatic Classification for Grouping designs (ACG) in a Fashion Design Recommendation Agent System (FDRAS) is proposed. The ACG algorithm groups designs into clusters based on these classified designs. It is possible that if the design requires simultaneous regrouping in all other groups, the ACG algorithm can be used to improve efficiency of information retrieval and sorting, in the FDRAS datasets. The proposed method is evaluated on a large database, significantly outperforming the nearest-neighbor model and k-mean clustering in the prototype user-adapting FDRAS. This method can solve the large-scale dataset problem without deteriorating accuracy quality.


Collaborative Filter Average Similarity Automatic Classification Expert System Application Collaborative Filter Recommender System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsabti, K., Ranka, S., Singh, V.: An Efficient K-Means Clustering Algorithm. In: Proc. of the Workshop on High-Performance Data Mining (1998)Google Scholar
  2. 2.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems (TOIS) archive 22(1), 5–53 (2004)CrossRefGoogle Scholar
  3. 3.
    Hwang, J.H., Gu, M.S., Ryu, K.H.: Context-Based Recommendation Service in Ubiquitous Commerce. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 966–976. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Jung, K.Y., Lee, J.H.: User Preference Mining through Hybrid Collaborative Filtering and Content-based Filtering in Recommendation System. IEICE Transaction on Information and Systems E87-D(12), 2781–2790 (2004)Google Scholar
  5. 5.
    Jung, K.Y., Na, Y.J., Lee, J.H.: FDRAS: Fashion Design Recommender Agent System using the Extraction of Representative Sensibility and the Two-Way Filtering on Textile. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 631–640. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Ko, S.J., Lee, J.H.: Feature Selection Using Association Word Mining for Classification. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 211–220. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kohrs, A., Merialdo, B.: Improving Collaborative Filtering with Multimedia Indexing Techniques to Create User-Adapting Web Sites. In: Proc. of the ACM Int. Conf. on Multimedia, pp. 27–36 (1999)Google Scholar
  8. 8.
    Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing Digital Libraries with TechLens+. In: Proc. of the 4th ACM/IEEE Joint Conf. on Digital Libraries, pp. 228–237 (2004)Google Scholar
  9. 9.
    Wang, J., de Vries, A.P., Reinders, M.J.T.: A User-Item Relevance Model for Log-based Collaborative Filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Yu, K., Xu, X., Ester, M., Kriegel, H.P.: Feature Weighting and Instance Selection for Collaborative Filtering: An Information-Theoretic Approach. Knowledge and Information Systems 5(2), 201–224 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kyung-Yong Jung
    • 1
  1. 1.School of Computer Information EngineeringSangji UniversityKorea

Personalised recommendations