User Preference Through Learning User Profile for Ubiquitous Recommendation Systems

  • Kyung-Yong Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)


As ubiquitous commerce is coming, the ubiquitous recommendation systems utilize collaborative filtering to help users with fast searches for the best suitable items by analyzing the similar preference. However, collaborative filtering may not provide high quality recommendation because it does not consider user’s preference on the attribute, the first rater problem, and the sparsity problem. This paper proposes the user preference through learning user profile for ubiquitous recommendation systems to solve the current problems. In addition, to determine the similarity between the users belonging to particular categories and new users, we assign different statistical values to the preference through learning user profile. We evaluated the proposed method on the EachMovie dataset and it was found to significantly outperform the previously proposed method.


User Preference User Profile Collaborative Filter Mean Absolute Error Bayesian Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balabanovic, M., Shoham, Y.: Fab: Content-based, Collaborative Recommendation. Communication of the Association of Computing Machinery 40(3), 66–72 (1997)Google Scholar
  2. 2.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  3. 3.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining Collaborative Filtering Recommendations. In: Proc. of the ACM 2000 Conf. on Computer Supported Cooperative Work, pp. 241–250 (2000)Google Scholar
  4. 4.
    Miyahara, K., Pazzani, M.J.: Collaborative Filtering with the Simple Bayesian Classifier. In: Proc. of the 6th Pacific Rim Int. Conf. on Artificial Intelligence, pp. 679–689 (2000)Google Scholar
  5. 5.
    Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B.M., Herlocker, J.L., Riedl, J.: Combining Collaborative Filtering with Personal Agents for Better Recommendations. In: Proc. of the 16th National Conf. on Artificial Intelligence, pp. 439–446 (1999)Google Scholar
  6. 6.
    Ko, S.J., Lee, J.H.: Bayesian Web Document Classification through Optimizing Association Word. In: Chung, P.W.H., Hinde, C.J., Ali, M. (eds.) IEA/AIE 2003. LNCS, vol. 2718, pp. 565–574. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Jung, K.Y., Lee, J.H.: User Preference Mining through Hybrid Collaborative Filtering and Content-based Filtering in Recommendation System. IEICE Transaction on Information and Systems E87-D(12), 2781–2790 (2004)Google Scholar
  8. 8.
    Lee, W.S.: Collaborative Learning for Recommender Systems. In: Proc. of the 18th International Conference on Machine Learning, pp. 314–321 (1997)Google Scholar
  9. 9.
    McJones, P.: EachMovie dataset, URL:
  10. 10.
    Mitchell, T.: Machine Learning, pp. 154–200. McGraw-hill, New York (1997)MATHGoogle Scholar
  11. 11.
  12. 12.
    Miyahara, K., Pazzani, M.J.: Collaborative Filtering with the Simple Bayesian Classifier. In: Proc. of the 6th Pacific Rim International Conf. on Artificial Intelligence, pp. 679–689 (2000)Google Scholar
  13. 13.
    Joachims, T.: A Probabilistic Analysis of the Rocchio Algorithm with TF.IDF for Text Categorization. In: Proc. of the 14th Int. Conf. on Machine Learning, pp. 143–151 (1997)Google Scholar
  14. 14.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: Proc. of the National Conf. on Artificial Intelligence, pp. 187–192 (2002)Google Scholar
  15. 15.
    Raymond, R., Bennett, P., Roy, L.: Book Recommending Using Text Categorization with Extracted Information. In: Proc. of the AAAI 1998/ICML Workshop on Learning Categorization, Madison, WI, pp. 49–54 (1998)Google Scholar
  16. 16.
    Soboroff, I., Nicholas, C.K.: Related, but not Relevant: Content-Based Collaborative Filtering in TREC-8. Information Retrieval 5(2-3), 189–208 (2002)CrossRefGoogle Scholar
  17. 17.
    Yu, K., Wen, Z., Xu, X.W., Ester, M.: Feature Weighting and Instance Selection for Collaborative Filtering: An Information-Theoretic Approach. Knowledge and Information Systems 5(2), 201–224 (2003)CrossRefGoogle Scholar
  18. 18.
    Hwang, J.H., Gu, M.S., Ryu, K.H.: Context-Based Recommendation Service in Ubiquitous Commerce. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 966–976. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Wang, J., de Vries, A.P., Reinders, M.J.T.: A User-Item Relevance Model for Log-based Collaborative Filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kyung-Yong Jung
    • 1
  1. 1.School of Computer Information EngineeringSangji UniversityKorea

Personalised recommendations