A Hardware Implementation of Lightweight Block Cipher for Ubiquitous Computing Security

  • Jong Sou Park
  • Sung-Hwan Kim
  • Dong Seong Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)


Ubiquitous Computing applications have resource constraints and conventional block ciphers are infeasible to meet their requirements. This paper presents a hardware design and implementation of lightweight block cipher based on Reversible Cellular Automata (RCA), which is able to generate high pseudo random patterns with low computational overheads. The prototype implementation shows that the total number of gate is less than 3k and operates for 400 clock cycles in 82.156 MHz and it outperforms AES and NTRU. In addition, the cryptanalysis including Strict Avalanche Criterion (SAC), Differential Cryptanalysis (DC) and Linear Cryptanalysis (LC) to our implementation is satisfied.


Clock Cycle Cellular Automaton Block Cipher Cipher Text Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sarma, D.S.E., Weis, S.A., Engels, D.W.: Radio-Frequency Identification, Security Risks and Challenges. RSA Laboratories Cryptobytes 6(1), 2–9 (Spring, 2003)Google Scholar
  2. 2.
    Chaudhuri, P.P., Chowdhury, A.R., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata, Theory and Applications, vol. 1. IEEE Computer Society Press, Los Alamitos (1997)MATHGoogle Scholar
  3. 3.
    Bhattacharjee, S., Sinha, S., Chattohyay, C., Chaudhuri, P.P.: Cellular Automata based scheme for solution of Boolean equations. In: IEEE Proceedings, Computer and Digital Techniques, vol. 143(3) (1996)Google Scholar
  4. 4.
    Mihaljevic, M., Imai, H.: A Family of Fast Keystream Generations based on Programmable Linear Cellular Automata over GF(q) and Time-Varient Table. IEICE Transactions on Fundamental E82-A(1), 32–39 (1999)Google Scholar
  5. 5.
    Mihaljevic, M., Zhang, Y., Imai, H.: A Fast and Secure Stream Cipher based on Cellular Automata over GF(q). In: IEEE Global Telecommunications Conference, GLOBECOM 1998, vol. 6, pp. 3250–3255 (1998)Google Scholar
  6. 6.
    Srisuchinwong, B., York, T.A., Taslides, P.: A Symmetric Cipher using autonomous and non-autonomous cellular automata. In: IEEE Global Telecommunications Conference, GLOBECOM 1995, pp. 1172–1177 (1995)Google Scholar
  7. 7.
    Seredynski, F., Bouvry, P., Zomaya, A.Y.: Cellular Automata computations and secret key cryptography. Parallel Computing 30, 753–766 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Seredynski, M., Pienkosz, K., Bouvry, P.: Reversible Cellular Automata Based Encryption. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004. LNCS, vol. 3222, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Toffoli, T., Margolus, N.: Invertible cellular automata. Physica D 45, 229–253 (1997)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    O’Rourke, C.M.: Efficient NTRU Implementations, M. S. Thesis, Electrical & Computer Engineering, Worcester Polytechnic Institute (2002)Google Scholar
  12. 12.
    Mangard, S., Aigner, M., Dominikus, S.: A Highly Regular and Scalable AES Hardware Architecture. IEEE Transactions on Computers 52(4), 483–491 (2003)CrossRefGoogle Scholar
  13. 13.
    Verbauwhede, I., Schaumont, P., Kuo, H.: Design and Performance Testing of a 2.29 Gb/s Rijndael Processor. IEEE Journal of Solid-State Circuits, 569–572 (March 2003)Google Scholar
  14. 14.
    Webster, A.F., Tavares, S.E.: On the Design of S-Boxes. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Heys, H.M., Tavares, S.E.: Substitution-Permutation Network Resistant to Differential and Linear Cryptanalysis. Journal of Cryptology, 148-155 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jong Sou Park
    • 1
  • Sung-Hwan Kim
    • 1
  • Dong Seong Kim
    • 1
  1. 1.Network Security Lab., Computer Engineering DepartmentHankuk Aviation University 

Personalised recommendations