Pixel-Wise Histograms for Visual Segment Description and Applications

  • Alvaro Pardo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


In this work we present an overview of several methods that extract information from a video segment using pixel-wise histograms or pixel-wise probability distributions. We will show that most of these algorithms that have been presented in the literature are specific implementations of a more general approach. Finally, we will present some applications based on these ideas to video segment retrieval and target detection in surveillance applications with static and dynamic backgrounds. We present a visual segment descriptor based on pixel-wise histograms that outperforms similar reviewed methods. In this way we show the advantages on this approach for this kind of problems.


Background Modeling Machine Intelligence Video Segment Visual Content Dynamic Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsushita, Y., Nishino, K., Ikeuchi, K., Sakauchi, M.: Illumination normalization with time-dependent intrinsic images for video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1336–1347 (2004)CrossRefGoogle Scholar
  2. 2.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)CrossRefGoogle Scholar
  3. 3.
    Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 747–757 (2000)CrossRefGoogle Scholar
  4. 4.
    Figueiredo, M., Jain, A.: Unsupervised Learning of Finite Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 381–396 (2002)CrossRefGoogle Scholar
  5. 5.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90, 1151–1163 (2002)CrossRefGoogle Scholar
  6. 6.
    Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: Proc. Int. Conf. Computer Vision, pp. 1305–1312 (2003)Google Scholar
  7. 7.
    Mittal, A., Paragios, N.: Motion based background subtraction using kernel density estimation. In: Proc. Computer Vision and Pattern Recognition (2004)Google Scholar
  8. 8.
    Zhang, H., Zhong, J., Somaliar, S.: An integrated system for content-based video retrieval and browsing. Pattern Recognition 30, 643–658 (1997)CrossRefGoogle Scholar
  9. 9.
    Ferman, A., Tekalp, A., Mehrotra, R.: Robust color histogram descriptors for video segment retrieval and identification. IEEE Transactions on Image Processing 11, 497–508 (2002)CrossRefGoogle Scholar
  10. 10.
    Sze, K., Lam, K., Qiu, G.: A new key frame representation for video segment retrieval. IEEE Transactions on Circuits and Systems for Video Technology 15, 1148–1155 (2005)CrossRefGoogle Scholar
  11. 11.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 809–830 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alvaro Pardo
    • 1
    • 2
  1. 1.DIE, Facultad de Ingeniería y TecnologíasUniversidad Católica del Uruguay 
  2. 2.IIE, Facultad de IngenieríaUniversidad de la República 

Personalised recommendations