Deterministic Tourist Walks as an Image Analysis Methodology Based

  • André R. Backes
  • Odemir M. Bruno
  • Mônica G. Campiteli
  • Alexandre S. Martinez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


Textures are important visual attribute used in image analysis. This paper presents a novel methodology, based on a deterministic walk, to texture analysis and texture characterization. Most of the methods adopted to classify textures deal with a defined fixed scale of texture. The method proposed here explores the set in all scales and is able to characterize efficiently different texture classes. The paper presents the deterministic walk technique and its results for two experiments using Brodatz images.


Joint Distribution Signature Vector Cycle Period Texture Class Transient Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wu, C.M., Chen, Y.C., Hsieh, K.S.: Texture features for classification of ultrasonic liver images. IEEE Transactions on Medical Imaging 11, 141–152 (1992)CrossRefGoogle Scholar
  2. 2.
    Yang, C.Z.X.: Study of remote sensing image texture analysis and classification using wavelet. International Journal of Remote Sensing 19(16), 3197–3203 (1998)CrossRefGoogle Scholar
  3. 3.
    Heidelbach, F., Kunze, K., Wenk, H.R.: Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope. Journal of Structural Geology, 91–104 (2000)Google Scholar
  4. 4.
    Anguiano, E., Oliva, A.I., Aguilar, M.: Surface texture parameters as a tool to measure image quality in scanning probe microscope. Ultramicroscopy 77(3), 195–205 (1999)CrossRefGoogle Scholar
  5. 5.
    Li, S.: On discontinuity-adaptive smoothness priors in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 576–586 (1995)CrossRefGoogle Scholar
  6. 6.
    Howarth, P., Ruger, S.: Evaluation of texture features for content-based image retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 326–334. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  8. 8.
    Campiteli, M.G., Martinez, A., Bruno, O.M.: A statisitcal texture classification framework using deterministic tourist walks. INFOCOMP Journal of Computer Science (submited, 2006)Google Scholar
  9. 9.
    Campiteli, M.G., Martinez, A.S., Bruno, O.M.: An image analysis methodology based on deterministic walks. In: IBERO -American Conference on Artificial Intelligence. LNCS (to appear, 2006)Google Scholar
  10. 10.
    Scholl, J., Schol-Paschinger, E.: Classification by restricted random walks. Pattern Recognition 36, 1279–1290 (2003)CrossRefGoogle Scholar
  11. 11.
    Derrida, B.: From random walks to spin glasses. Phys. D 107(2–4), 186–198 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Freund, H., Grassberger, P.: The Red Queens walk. Physica A 190(3-4), 218–237 (1992)CrossRefGoogle Scholar
  13. 13.
    Bunimovich, L.A., Troubetzkoy, S.E.: Recurrence properties of Lorentz lattice gas cellular automata. J. Stat. Phys. 67(1-2), 289–302 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bunimovich, L.A.: Deterministic walks in random environments. Physica D 187, 20–29 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gale, D., Propp, J., Sutherland, S., Troubetzkoy, S.: Further travels with my ant. Math. Inteligencer 17(3), 48–56 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lima, G.F., Martinez, A.S., Kinouchi, O.: Deterministic walks in random media. Phys. Rev. Lett. 87(1), 10603 (2001)CrossRefGoogle Scholar
  17. 17.
    Stanley, H.E., Buldyrev, S.V.: Statistical physics - the salesman and the tourist. Nature (London) 413(6854), 373–374 (2001)CrossRefGoogle Scholar
  18. 18.
    Kinouchi, O., Martinez, A.S., Lima, G.F., Lourenço, G.M., Risau-Gusman, S.: Deterministic walks in random networks: an application to thesaurus graphs. Physica A 315(3/4), 665–676 (2002)MATHCrossRefGoogle Scholar
  19. 19.
    Boyer, D., Miramontes, O., Ramos-Fernandez, G., Mateos, J.L., Cocho, G.: Modeling the searching behavior of social monkeys. Physica A 342(1-2), 329–335 (2004)CrossRefGoogle Scholar
  20. 20.
    Boyer, D., Larralde, H.: Looking for the right thing at the right place: Phase transition in an agent model with heterogeneous spatial resources. Complexity 10(3), 52–55 (2005)CrossRefGoogle Scholar
  21. 21.
    aes Campiteli, M.G., Batista, P.D., Kinouchi, O., Martinez, A.S.: Deterministic walks as an algorithm of pattern recognition (submitted, 2006)Google Scholar
  22. 22.
    Terçariol, C.A.S., Martinez, A.S.: Analytical results for the statistical distribution related to memoryless deterministic tourist walk: Dimensionality effect and mean field models. Phys. Rev. E 72, 21103 (2005)CrossRefGoogle Scholar
  23. 23.
    Brodatz, P.: A Photographic Album for Arts and Design, vol. 1. Dover Publishing Co., Toronto (1966)Google Scholar
  24. 24.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2005)Google Scholar
  25. 25.
    Webb, A.: Statistical Pattern Recognition, vol. 1. Newnes (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • André R. Backes
    • 1
  • Odemir M. Bruno
    • 1
  • Mônica G. Campiteli
    • 2
  • Alexandre S. Martinez
    • 2
  1. 1.Universidade de São Paulo (USP)Instituto de Ciências Matemáticas e de Computação (ICMC)São CarlosBrazil
  2. 2.Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP)Universidade de São Paulo (USP)Ribeirão PretoBrazil

Personalised recommendations