Advertisement

General Pose Face Recognition Using Frontal Face Model

  • Jean-Yves Guillemaut
  • Josef Kittler
  • Mohammad T. Sadeghi
  • William J. Christmas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

We present a face recognition system able to identify people from a single non-frontal image in an arbitrary pose. The key component of the system is a novel pose correction technique based on Active Appearance Models (AAMs), which is used to remap probe images into a frontal pose similar to that of gallery images. The method generalises previous pose correction algorithms based on AAMs to multiple axis head rotations. We show that such model can be combined with image warping techniques to increase the textural content of the images synthesised. We also show that bilateral symmetry of faces can be exploited to improve recognition. Experiments on a database of 570 non-frontal test images, which includes 148 different identities, show that the method produces a significant increase in the success rate (up to 77.4%) compared to conventional recognition techniques which do not consider pose correction.

Keywords

Face Recognition Active Appearance Model Face Recognition System View Synthesis Gallery Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, J.: Face recognition vendor test 2002: Evaluation report (2003)Google Scholar
  2. 2.
    Beymer, D.J.: Face recognition under varying pose. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 756–761 (1994)Google Scholar
  3. 3.
    Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 84–91 (1994)Google Scholar
  4. 4.
    Vetter, T., Poggio, T.: Linear object classes and image synthesis from a single example image. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 733–742 (1997)CrossRefGoogle Scholar
  5. 5.
    Vetter, T.: Synthesis of novel views from a single face image. International Journal of Computer Vision 28(2), 103–116 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from appearance. International Journal of Computer Vision 14(1), 5–24 (1995)CrossRefGoogle Scholar
  7. 7.
    Graham, D.B., Allinson, N.M.: Face recognition from unfamiliar views: Subspace methods and pose dependency. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 348–353 (1998)Google Scholar
  8. 8.
    Li, Y., Gong, S., Liddell, H.: Constructing facial identity surfaces for recognition. International Journal of Computer Vision 53(1), 71–92 (2003)CrossRefGoogle Scholar
  9. 9.
    Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)CrossRefGoogle Scholar
  10. 10.
    Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image and Vision Computing 20(9-10), 657–664 (2002)CrossRefGoogle Scholar
  13. 13.
    Kang, H., Taylor, T.F.C., C.J.: A comparison of face verification algorithms using appearance models. In: Proc. British Machine Vision Conference, vol. 2, pp. 477–486 (2002)Google Scholar
  14. 14.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  15. 15.
    Blanz, V., Grother, P., Phillips, P.J., Vetter, T.: Face recognition based on frontal views generated from non-frontal images. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 454–461 (2005)Google Scholar
  16. 16.
    Zhao, W., Chellappa, R.: SFS based view synthesis for robust face recognition. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 285–292 (2000)Google Scholar
  17. 17.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  18. 18.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs (1982)MATHGoogle Scholar
  19. 19.
    Li, Y.: Linear Discriminant Analysis and its application to Face Identification. PhD thesis, University of Surrey (2000)Google Scholar
  20. 20.
    de Berg, M., Schwarzkopf, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)MATHGoogle Scholar
  21. 21.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)MATHCrossRefGoogle Scholar
  22. 22.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The extended M2VTS database. In: Proceedings of International Conference on Audio- and VideoBased Biometric Person Authentication (AVBPA), pp. 72–77 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Yves Guillemaut
    • 1
  • Josef Kittler
    • 1
  • Mohammad T. Sadeghi
    • 2
  • William J. Christmas
    • 1
  1. 1.School of Electronics and Physical SciencesUniversity of SurreyGuildfordU.K.
  2. 2.Department of Electrical EngineeringYazd UniversityYazdIran

Personalised recommendations