Advertisement

A Probabilistic Approach to Build 2D Line Based Maps from Laser Scans in Indoor Environments

  • Leonardo Romero
  • Carlos Lara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

In this work we consider a mobile robot with a laser range finder. Our goal is to find the best set of lines from the sequence of points given by a laser scan. We propose a probabilistic method to deal with noisy laser scans, in which the noise is not properly modeled using a Gaussian Distribution. An experimental comparison with a very well known method (SMSM), using a mobile robot simulator and a real mobile robot, shows the robustness of the new method. The new method is also fast enough to be used in real time.

References

  1. 1.
    Borges, G.A., Aldon, M.-J.: Line extraction in 2d range images for mobile robotics. J. Intell. Robotics Syst. 40(3), 267–297 (2004)CrossRefGoogle Scholar
  2. 2.
    Chen, H., Meer, P.: Robust regression with projection based m–estimators. In: Proceedings of the 1991 IEEE International Conference on Computer Vision and Patern Recognition (2003)Google Scholar
  3. 3.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm (with discussion). Journal of the Royal Statistical Society (1977)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley-Interscience, Chichester (1976)Google Scholar
  5. 5.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  7. 7.
    Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3D models of indoor and outdoor environments with a mobile robot. Robotics and Autonomous Systems 44 (2003)Google Scholar
  8. 8.
    Hough, P.V.C.: Machine analysis of bubble chamber pictures. In: International Conference on High Energy Accelerators and Instrumentation (1959)Google Scholar
  9. 9.
    Huber, P.: Robust location of a location parameter. Annals of Mathematical Statistical 35 (1964)Google Scholar
  10. 10.
    Meer, P., Stewart, C.V., Tyler, D.E.: Introduction, robust computer vision: An interdisciplinary challenge. Computer Vision and Image Understanding (2000)Google Scholar
  11. 11.
    Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2d. laser rangefinder for indoor mobile robotics. In: International Conference on Intelligent Robots and Systems (IROS 2005) (2005)Google Scholar
  12. 12.
    Siegwart, R.: Introduction to Autonomus Mobile Robots. The MIT Press, Cambridge (2004)Google Scholar
  13. 13.
    Stewart, C.V.: Minpran: A new robust operator for computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence (1995)Google Scholar
  14. 14.
    Stewart, C.V.: Robust parameter estimation in computer vision. SIAM Review 41(3), 513–537 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar
  16. 16.
    Torr, P.H.S., Zisserman, A.: Robust computation and parameterization of multiple view relations. In: ICCV6, pp. 727–732 (1998)Google Scholar
  17. 17.
    Zezhong, X., Jilin, L., Zhiyu, X.: Map building and localization using 2d range scanner. In: Proceedings 2003 IEEE International Symposium on Computational Intelligence in Mobile Robotics and Automation, pp. 848–853 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leonardo Romero
    • 1
  • Carlos Lara
    • 1
  1. 1.Michoacana UniversityMorelia, Mich.Mexico

Personalised recommendations