Advertisement

Diagnosis of Chronic Idiopathic Inflammatory Bowel Disease Using Bayesian Networks

  • Nicandro Cruz-Ramírez
  • Héctor-Gabriel Acosta-Mesa
  • Rocío-Erandi Barrientos-Martínez
  • Luis-Alonso Nava-Fernández
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

In this paper, we evaluate the effectiveness of four Bayesian network classifiers as potential tools for the histopathological diagnosis of chronic idiopathic inflammatory bowel disease (CIIBD) using a database containing endoscopic colorectal biopsies. CIIBD is the generic term for referring to two ailments known as Crohn’s disease and ulcerative colitis. The results show that the defined histological attributes, considered relevant in the medical literature for the diagnosis of CIIBD, are very good for the distinction between normal samples and CIIBD samples (Crohn’s disease and ulcerative colitis combined into a single category) but less good for the explicit distinction between Crohn’s disease and ulcerative colitis. The findings suggest an intrinsic impossibility of selecting a set of features for achieving good balance for both sensitivity and specificity for Crohn’s disease and ulcerative colitis.

Keywords

Ulcerative Colitis Bayesian Network Minimum Description Length Bayesian Network Structure Bayesian Information Criterion Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cheng, J., Bell, D.A., Liu, W.: Learning Belief Networks from Data: An Information Theory Based Approach. In: Sixth ACM International Conference on Information and Knowledge Management, ACM Press, New York (1997)Google Scholar
  2. 2.
    Cheng, J., Greiner, R.: Comparing Bayesian Network Classifiers. In: Fifteenth Conference on Uncertainty in Artificial Intelligence (1999)Google Scholar
  3. 3.
    Cross, S.S.: Dataset of Observed Features on Endoscopic Colorectal Biopsies from Normal Subjects and Patients with Chronic Inflammatory Bowel Disease (Crohn’s disease and Ulcerative Colitis), Department of Pathology, University of Sheffield Medical School, pp. 1-15 (1999)Google Scholar
  4. 4.
    Cross, S.S., et al.: Which Decision Support Technologies Are Appropriate for the Cytodiagnosis of Breast Cancer? In: Jain, A., et al. (eds.) Artificial Intelligence Techniques in Breast Cancer Diagnosis and Prognosis, pp. 265–295. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  5. 5.
    Cross, S.S., Harrison, R.F.: Discriminant histological features in the diagnosis of chronic idiopathic inflammatory bowel disease: analysis of a large dataset by a novel data visualisation technique. Journal of Clinical Pathology 55, 51–57 (2002)CrossRefGoogle Scholar
  6. 6.
    Cruz-Ramirez Nicandro, N.-F.L., Gabriel, A.-M.H., Erandi, B.-M., Efrain, R.-M.J.: A Parsimonious Constraint-based Algorithm to Induce Bayesian Network Structures from Data. In: IEEE Proceedings of the Mexican International Conference on Computer Science ENC 2005, Puebla, pp. 306–313. IEEE (2005)Google Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley, Chichester (2001)MATHGoogle Scholar
  8. 8.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)MATHCrossRefGoogle Scholar
  9. 9.
    Friedman, N., Goldszmidt, M.: Learning Bayesian Networks from Data, University of California, Berkeley and Stanford Research Institute, p. 117 (1998)Google Scholar
  10. 10.
    Grunwald, P.: Introducing MDL. In: Grunwald, P., Myung, I.J., Pitt, M.A. (eds.) Advances in Minimum Description Length: Theory and Applications, The MIT Press, Cambridge (2005)Google Scholar
  11. 11.
    Grunwald, P.: Tutorial on MDL. In: Grunwald, P., Myung, I.J., Pitt, M.A. (eds.) Advances in Minimum Description Length: Theory and Applications, The MIT Press, Cambridge (2005)Google Scholar
  12. 12.
    Guindi, M., Riddell, R.H.: Indeterminate colitis. Journal of Clinical Pathology 57, 1233–1244 (2004)CrossRefGoogle Scholar
  13. 13.
    Han, J., Kamber, M.: Data Mining. Concepts and Techniques. In: Gray, J. (ed.) Data Management Systems, 1st edn., p. 550. Morgan Kaufmann, San Francisco (2001)Google Scholar
  14. 14.
    Heckerman, D.: A Tutorial on Learning with Bayesian Networks. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 301–354. MIT Press, Cambridge (1998)Google Scholar
  15. 15.
    Jenkins, D., et al.: Guidelines for the initial biopsy diagnosis of suspected chronic idiopathic inflammatory bowel disease. The British Society of Gastroenterology Initiative. Journal of Clinical Pathology 50, 93–105 (1997)CrossRefGoogle Scholar
  16. 16.
    Jenkins, D., et al.: What is colitis? Statistical approach to distinguishing clinically important inflammatory change in rectal biopsy specimens. Journal of Clinical Pathology 41, 72–79 (1988)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: 14th International Joint Conference on Artificial Intelligence IJCAI 1995, Morgan Kaufmann, Montreal (1995a)Google Scholar
  18. 18.
    Kurgan, L.A., Cios, K.J.: CAIM Discretization Algorithm. IEEE Transactions on Knowledge and Data Engineering 16(2), 145–153 (2004)CrossRefGoogle Scholar
  19. 19.
    Lessells, A.M., et al.: Observer variability in the histopathological reporting of abnormal rectal biopsy specimens. Journal of Clinical Pathology 47, 48–52 (1994)CrossRefGoogle Scholar
  20. 20.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. In: Representation and Reasoning, ed. R.J.B.A.T.B. Laboratories, 1st edn., Morgan Kaufmann, San Mateo (1988)Google Scholar
  21. 21.
    Sheperd, N.A.: Pathological mimics of chronic inflammatory bowel disease. Journal of Clinical Pathology 44, 726–733 (1991)CrossRefGoogle Scholar
  22. 22.
    Walker, A.J., Cross, S.S., Harrison, R.F.: Visualisation of biomedical datasets by use of growing cell structure networks: a novel diagnostic classification technique. The Lancet 354, 1518–1521 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicandro Cruz-Ramírez
    • 1
  • Héctor-Gabriel Acosta-Mesa
    • 1
  • Rocío-Erandi Barrientos-Martínez
    • 1
  • Luis-Alonso Nava-Fernández
    • 2
  1. 1.Facultad de Física e Inteligencia ArtificialUniversidad VeracruzanaXalapa, VeracruzMéxico
  2. 2.Universidad VeracruzanaInstituto de Investigaciones en EducaciónXalapa, VeracruzMéxico

Personalised recommendations