Two Step Ant Colony System to Solve the Feature Selection Problem

  • Rafael Bello
  • Amilkar Puris
  • Ann Nowe
  • Yailen Martínez
  • María M. García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


In this paper we propose a new model of ACO called Two-Step AntColony System. The basic idea is to split the heuristic search performed by ants into two stages. We have studied the performance of this new algorithm for the Feature Selection Problem. Experimental results obtained show the Two-Step approach significantly improves the Ant Colony System in term of computation time needed.


  1. 1.
    Bello, P.R., Nowe, A., et al.: Using ACO and Rough Set Theory to Feature Selection. WSEAS Transactions on Information Science and Applications 2(5), 512–517 (2005)Google Scholar
  2. 2.
    Bello, P.R., Nowe, A., et al.: A Model based on Ant Colony System and Rough Set Theory to Feature Selection. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2005), Washington DC, USA, June 25-29, pp. 275–276. ACM Press, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Bello, P.R., Nowe, A., et al.: Using Ant Colony System meta-heuristic and Rough Set Theory to Feature Selection. In: Proceedings of The 6th Metaheuristics International Conference (MIC2005), Vienna, Austria, August 22-26, University of Vienna (2005)Google Scholar
  4. 4.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998),
  5. 5.
    Dong, M., Kothari, R.: Feature subset selection using a new definition of classifiability. Patter Recognition Letter 24(9-10), 1215–1225 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dorigo, M., et al.: The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics-Part B 26(1), 1–13 (1996)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Gambardela, L.M.: Ant colonies for the traveling salesman problem. BioSystems (43), 73–81 (1997)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., et al.: Ant algorithms for Discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Stützle, T.: ACO Algorithms for the Traveling Salesman Problem, Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications, John Wiley & Sons., EEUU (1999)Google Scholar
  10. 10.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Inza, I., et al.: Feature subset selection by bayesian networks based optimization. Artificial intelligence 123(1-2), 157–184 (2000)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jensen, R., Shen., Q.: Finding rough set reducts with ant colony optimization. In: Proceedings of UK Workshop on Computational Intelligence, pp. 15–22 (2003)Google Scholar
  13. 13.
    Komorowski, J., Pawlak, Z., et al.: Rough Sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A new trend in decision-making, pp. 3–98. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)CrossRefGoogle Scholar
  15. 15.
    Somol, P., Pudil, P.: Feature selection toolbox. Pattern Recognition 35, 2749–2759 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Stefanowski, J.: An experimental evaluation of improving rule based classifiers with two approaches that change representations of learning examples. Engineering Applications of Artificial Intelligence 17, 439–445 (2004)CrossRefGoogle Scholar
  17. 17.
    Xing, H., Xu, L.: Feature space theory –a mathematical foundation for data mining. Knowledge-based systems 14, 253–257 (2001)CrossRefGoogle Scholar
  18. 18.
    Zhang, H., Sun, G.: Feature selection using tabu search method. Pattern Recognition 35, 710–711 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rafael Bello
    • 1
  • Amilkar Puris
    • 1
  • Ann Nowe
    • 2
  • Yailen Martínez
    • 1
  • María M. García
    • 1
  1. 1.Department of Computer ScienceUniversidad Central de Las VillasCuba
  2. 2.Comp Lab, Department of Computer ScienceVrije Universiteit BrusselBelgium

Personalised recommendations