The Associative Recall of Spatial Correlated Patterns

  • Jana Štanclová
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


The strategies for an associative recall can be based on associative memory models. However, the performance of standard associative memories is very sensitive to the number of stored patterns and their mutual correlations. With respect to huge amounts of spatial patterns (mostly correlated) to be processed, we have focused on an arbitrary number of associative memories grouped into several layers (Hierarchical Associative Memories – HAM). In the newly presented HAM2-model, the patterns are hierarchically grouped according to the “previous-layer” patterns. The HAM2-model uses the information recalled by the “previous-layer” to find an appropriate subset of “next-level” associative memories. To evaluate the performance of the HAM2-model, extensive simulations are carried out. The experimental results show the recall ability of the model in the area of associative pattern recall.


Associative Memory Training Pattern Acceptable Error Difference Pattern Pattern Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amit, D.J., Gutfreund, H., Sompolinsky, H.: Information storage in neural networks with low levels of activity. Physical Review A 35, 2293–2303 (1987)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Donnart, J.Y., Meyer, J.A.: Hierarchical-map building and selfpositioning with MonaLysa. Adaptive Behavior 5(1), 29–74 (1996)CrossRefGoogle Scholar
  3. 3.
    Gutfreund, H.: Neural networks with hierarchically correlated patterns. Physical Review A 37, 570–577 (1988)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fukushima, K., Yamaguchi, Y., Okada, M.: Neural Network Model of Spatial Memory: Associative Recall of Maps. Neural Network 10(6), 971–979 (1997)CrossRefGoogle Scholar
  6. 6.
    Hirahara, M., Oka, N., Kindo, T.: A cascade associative memory model with a hierarchical memory structure. Neural Networks 13(1), 41–50 (2000)CrossRefGoogle Scholar
  7. 7.
    Hopfield, J.J.: Neural Networks and physical system with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kimoto, T., Okada, M.: Coexistence of memory patterns and mixed states in a sparsely encoded associative memory model storing ultrametric patterns. Biological Cybernetics 90, 229–238 (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Matsumoto, N., Ide, D., Watanabe, M., Okada, M.: Synaptic Depression Enlarges Basin of Attraction. Neurocomputing 577, 65–66 (2005)Google Scholar
  10. 10.
    Morita, M.: Associative memory with nonmonotone dynamics. Neural Networks 6, 115–126 (1993)CrossRefGoogle Scholar
  11. 11.
    Štanclová, J., Zavoral, F.: Hierarchical Associative Memories: The Neural Network for Path Prediction in Spatial Maps. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 786–793. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Voicu, H.: Hierarchical cognitive maps. Neural Networks 16, 569–576 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jana Štanclová
    • 1
  1. 1.Department of Software Engineering, Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic

Personalised recommendations