Object Recognition and Tracking in Video Sequences: A New Integrated Methodology

  • Nicolás Amézquita Gómez
  • René Alquézar
  • Francesc Serratosa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


This paper describes a methodology that integrates recognition and segmentation, simultaneously with image tracking in a cooperative manner, for recognition of objects (or parts of them) in image sequences. A probabilistic general approach at pixel level is depicted together with a practical heuristic simplification in which pixels’ class probabilities are approximated by a finite small set of class possibility values. These possibility values are updated iteratively along the image sequence for each class and each pixel taking into account both the prior tracking information and the spot-based object recognition results provided by a trained neural network. A further segmentation of the class possibility images allows the tracking of each object of interest in the sequence. The good experimental results obtained so far show the viability of the approach under certain conditions.


Object recognition object tracking image segmentation neural networks probabilistic approach video sequences 


  1. 1.
    Tu, Z., Chen, X., Yuille, A.L., Zhu, S.C.: Image Parsing: Unifying Segmentation, Detection, and Recognition. In: Proceedings in Ninth IEEE International Conference on Computer Vision, pp. 18–25 (2003) ISBN: 0-7695-1950-4Google Scholar
  2. 2.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and Texture Analysis for Image Segmentation. IJCV 43(1) (2001)Google Scholar
  3. 3.
    Tu, Z., Zhu, S.C.: Image segmentation by Data Driven Markov chain Monte Carlo. IEEE Trans. PAMI 24(5) (2002)Google Scholar
  4. 4.
    Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)CrossRefGoogle Scholar
  5. 5.
    Nelson, R.C., Green, I.A.: Tracking objects using recognition. In: Proceedings 16th International Conference on Pattern Recognition, vol. 2, pp. 1025–1030 (2002) ISSN: 1051-4651, ISBN: 0-7695-1695-XGoogle Scholar
  6. 6.
    Iwasa, Y., Oka, R.: Spotting recognition and tracking of a deformable object in a time-varying image using two-dimensional continuous dynamic programming. In: Das, G., Gulati, V.P. (eds.) CIT 2004. LNCS, vol. 3356, pp. 33–38. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Von Wichert, G.: A probabilistic approach to simultaneous segmentation, object recognition, 3d localization, and tracking using stereo. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, p. 100. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Amézquita Gómez, N., Alquézar, R.: Object Recognition in Indoor Video Sequences by Classifying Image Segmentation Regions Using Neural Networks. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 93–102. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gerke, M., Heipke, C., Straub, B.-M.: Building extraction from aerial imagery using a generic scene model and invariant geometric moments. In: Remote Sensing and Data Fusion over Urban Areas, IEEE/ISPRS Joint Workshop, pp. 85–89 (2001) ISBN: 0-7803-7059-7 8Google Scholar
  10. 10.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall, New Jersey (1982)Google Scholar
  11. 11.
    Serratosa, F., Amézquita Gómez, N., Alquézar, R.: Combining neural networks and clustering techniques for object recognition in indoor video sequences. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolás Amézquita Gómez
    • 1
  • René Alquézar
    • 2
  • Francesc Serratosa
    • 1
  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations