Correlation Filters for Detection and Localization of Objects in Degraded Images

  • Erika M. Ramos-Michel
  • Vitaly Kober
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


Several correlation filters are derived to improve pattern recognition of a noisy target embedded into nonoverlapping background, when the input image is degraded with a linear system. With the help of computer simulation we analyze and compare the performance of various correlation based methods for reliable detection and localization of objects in blurred and noisy images.


Object recognition correlation filters degraded image 


  1. 1.
    VanderLugt, A.B.: Signal Detection by Complex Filtering. IEEE Trans. Inf. Theory 10, 135–139 (1964)Google Scholar
  2. 2.
    Horner, J.L., Gianino, P.D.: Phase-Only Matched Filtering. Applied Optics 23(6), 812–816 (1984)CrossRefGoogle Scholar
  3. 3.
    Vijaya-Kumar, B.V.K., Hassebrook, L.: Performance Measures for Correlation Filters. Applied Optics 29(20), 2997–3006 (1990)CrossRefGoogle Scholar
  4. 4.
    Javidi, B., Wang, J.: Design of Filters to Detect a Noisy Target in Nonoverlapping Background Noise. Journal OSA (A) 11(10), 2604–2612 (1994)CrossRefGoogle Scholar
  5. 5.
    Vijaya-Kumar, B.V.K.: Correlation Filters Minimizing Peak Location Errors. Journal OSA (A) 9(5), 678–682 (1992)CrossRefGoogle Scholar
  6. 6.
    Yaroslavsky, L.P.: The theory of optimal methods for localization of objects in pictures. In: Wolf, E. (ed.) Progress in Optics XXXII, pp. 145–201. Elsevier, Amsterdam (1993)CrossRefGoogle Scholar
  7. 7.
    Javidi, B., Horner Joseph, L.: Real-Time Optical Information Processing. Academic Press, San Diego (1994)Google Scholar
  8. 8.
    Ahouzi, E., Campos, J., Yzuel, M.J.: Phase-Only Filter with Improved Discrimination. Journal OSA (A) 19(17), 1340–1342 (1994)Google Scholar
  9. 9.
    Javidi, B., Parchekani, F., Zhang, G.: Minimum-Mean-Square-Error Filters for Detecting a Noisy Target in Background Noise. Applied Optics 35, 6964–6975 (1996)CrossRefGoogle Scholar
  10. 10.
    Kober, V., Campos, J.: Accuracy of Location Measurement of a Noisy Target in a Nonoverlapping Background. Journal OSA (A) 13(8), 1653–1666 (1996)CrossRefGoogle Scholar
  11. 11.
    Towghi, N., Javidi, B.: Generalized Optimum Receiver for Pattern Recognition with Multiplicative, Additive, and Nonoverlapping Background Noise. Journal OSA (A) 15(6), 1557–1565 (1998)CrossRefGoogle Scholar
  12. 12.
    Yaroslavsky, L.P.: Is the Phase-Only Filter and Its Modifications Optimal in Terms of the Discrimination Capability in Pattern Recognition? Applied Optics 31(11), 1677–1679 (1998)CrossRefGoogle Scholar
  13. 13.
    Kober, V.I., Ovseyevich, A.: Phase-Only Filter with Improved Filter Efficiency and Correlation Discrimination. Pattern Recognition and Image Analysis 10(4), 514–519 (2000)Google Scholar
  14. 14.
    Jain Anil, K.: Fundamental of Digital Image Processing, 1st edn. Prentice-Hall, Englewood Cliffs (1988)Google Scholar
  15. 15.
    Biemond, J., Lagendijk, R.L., Mersereau, R.M.: Iterative Methods for Image Deblurring. Proceedings of the IEEE 78(5), 856–883 (1990)CrossRefGoogle Scholar
  16. 16.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publising, Bristol and Philadelphia (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Pratt, W.K.: Digital Image Processing. Wiley-Interscience Publication, New York (1981)Google Scholar
  18. 18.
    Jähne, B.: Digital Image Processing. Springer, Germany (2002)zbMATHGoogle Scholar
  19. 19.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erika M. Ramos-Michel
    • 1
  • Vitaly Kober
    • 1
  1. 1.Department of Computer Sciences, Division of Applied PhysicsCICESEEnsenadaMéxico

Personalised recommendations