Evaluation of Time and Frequency Domain-Based Methods for the Estimation of Harmonics-to-Noise-Ratios in Voice Signals

  • Carlos A. Ferrer
  • Eduardo González
  • María E. Hernández-Díaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


In this paper several approaches of time and frequency domain-based algorithms to estimate harmonics-to-noise ratios (HNR) in voice signals are compared. The approaches covered incorporate a recent time-domain correction to a classic method, as well as a frequency-domain adjustment introduced here. The experimental comparisons include the number of pitch periods needed to obtain the best HNR estimates, as well as the sensitivity of the methods to different perturbations of the periodicity pattern, like shimmer, jitter, noise and combinations of them. Time domain methods show better performance than frequency-based approaches, and moreover, the correction to the ensemble-average time domain technique reduces the required number of pulses by an order of magnitude.


Speech Signal Additive Noise Pulse Length Dynamic Time Warping Functional Data Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, N.B., Ito, M.R., Morrison, M.D.: Data labeling and sampling effects in harmonics-to-noise ratios. J. Acoust. Soc. Am. 85, 2165–2178 (1989)CrossRefGoogle Scholar
  2. 2.
    Cox, N.B., Ito, M.R., Morrison, M.D.: Technical considerations in computation of spectral harmonics-to-noise-ratios for sustained vowels. 32, 203–218 (1989)Google Scholar
  3. 3.
    Ferrer, C.A., González, E., Hernández-Díaz, M.E.: Correcting the use of ensemble averages in the calculation of harmonics to noise ratios in voice signals. J. Acoust. Soc. Am. 118, 605–607 (2005)CrossRefGoogle Scholar
  4. 4.
    Fukazawa, T., El-Assuooty, A., Honjo, I.: A new index for evaluation of the turbulent noise in pathological voice. Journal of the Acoustical Society of America 83(3), 1189–1193 (1988)CrossRefGoogle Scholar
  5. 5.
    Hillenbrand, J.: A methodological study of perturbation and additive noise in synthetically generated voice signals. J. Speech Hea. Res. 30, 448–461 (1987)Google Scholar
  6. 6.
    Hillenbrand, J., Cleveland, R.A., Erickson, R.L.: Acoustic correlates of breathy vocal quality. J. Speech Hea. Res. 37, 769–778 (1994)Google Scholar
  7. 7.
    Kasuya, H., Ogawa, S., Kazuhiko, M., Ebihara, S.: Normalized noise energy as an acoustic measure to evaluate pathologic voice. J. Acoust. Soc. Am. 80, 1329–1334 (1986)CrossRefGoogle Scholar
  8. 8.
    Kojima, H., Gould, W.J., Lambiase, A., Isshiki, N.: Computer analysis of hoarseness. Acta Otolaringol. 89, 547–554 (1980)CrossRefGoogle Scholar
  9. 9.
    Lucero, J.C., Koenig, L.L.: Time normalization of voice signals using functional data analysis. J. Acoust. Soc. Am. 108, 1408–1420 (2000)CrossRefGoogle Scholar
  10. 10.
    Medan, Y., Yain, E., Chazan, D.: Super resolution pitch determination of the speech signals. IEEE Transactions on Signal Processing 39, 40–48 (1991)CrossRefGoogle Scholar
  11. 11.
    Murphy, P.J.: Perturbation-free measurement of harmonics-to-noise ratio in voice signals using pitch-synchronous harmonic analysis. J. Acoust. Soc. Am. 105, 2866–2881 (1999)CrossRefGoogle Scholar
  12. 12.
    Parsa, V., Jamieson, D.G.: A comparison of high precision Fo extraction algorithms for sustained vowels. Journal of Speech, Language & Hearing Research 42, 112–126 (1999)Google Scholar
  13. 13.
    Qi, Y.: Time-normalization in voice analysis. J. Acoust. Soc. Am. 92, 2569–2576 (1992)CrossRefGoogle Scholar
  14. 14.
    Qi, Y., Weinberg, B., Bi, N., Hess, W.J.: Minimizing the effect of period determination on the computation of amplitude perturbation in voice. J. Acoust. Soc. Am. 97, 2525–2532 (1995)CrossRefGoogle Scholar
  15. 15.
    Qi, Y., Hillman, R.E.: Temporal and spectral estimations of harmonics-to-noise ratio in human voice signals. J. Acoust. Soc. Am. 102, 537–543 (1997)CrossRefGoogle Scholar
  16. 16.
    Schoentgen, J., Bensaid, M., Bucella, F.: Multivariate statistical analysis of flat vowel spectra with a view to characterizing dysphonic voices. J. Speech, Lang. Hear. Res. 43, 1493–1508 (2000)Google Scholar
  17. 17.
    Schoentgen, J.: Spectral models of additive and modulation noise in speech and phonatory excitation signals. J. Acoust. Soc. Am. 113, 553–562 (2003)CrossRefGoogle Scholar
  18. 18.
    Shrivastav, R., Sapienza, C.M.: Objective measures of breathy vocal quality using an auditory model. J. Acoust Soc. Am. 114, 2217–2224 (2003)CrossRefGoogle Scholar
  19. 19.
    Titze, I.R.: Summary Statement. In: Workshop-on acoustic voice analysis. National Center of Voice and Speech. Iowa (1994)Google Scholar
  20. 20.
    Yumoto, E., Gould, W.J., Baer, T.: The harmonics-to-noise ratio as an index of the degree of hoarseness. J. Acoust Soc. Am. 71, 1544–1550 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos A. Ferrer
    • 1
  • Eduardo González
    • 1
  • María E. Hernández-Díaz
    • 1
  1. 1.Center for Studies on Electronics and Information TechnologiesCentral University of Las VillasSanta ClaraCuba

Personalised recommendations