Model-Based Localization Method by Non-speech Sound Via Wavelet Transform and Dynamic Neural Network

  • Albert Marzàbal
  • Antoni Grau
  • Yolanda Bolea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


Non-speech sound processing is of great interest for indoor mobile robot localization. This paper presents a technique based on feature extraction from continuous wavelet transform (CWT) and a dynamic feed-forward neural network that will approximate the position of the robot in the spatial domain. The link between the function approximation stage (ANN) and the feature extraction stage (CWT) is performed by feature comparative analysis.


Sound Source Laser Weld Mother Wavelet Continuous Wavelet Transform Continuous Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bolea, Y., Grau, A., Sanfeliu, A.: Non-speech sound feature extraction based on model identification for robot navigation. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 221–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bolea, Y., Grau, A., Pelissier, A., Sanfeliu, A.: Structural Pattern Recognition for Industrial Machine Sounds based on Frequency Spectrum Analysis. In: Sanfeliu, A., Martínez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS, vol. 3287, pp. 287–295. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Luo, H., Zeng, H., Hu, L., Hu, X., Zhou, Z.: Application of Artificial Neural Network in Laser Welding Defect Diagnosis. Journal of Materials Processing Technology 170, 403–411 (2005)CrossRefGoogle Scholar
  4. 4.
    Huang, J., Supaongprpa, T., Terakura, I., Wang, F., Ohnishi, N., Sugie, N.: A model-based sound localization system and its application to robot navigation. Robotics and Autonomous Systems 27, 199–209 (1999)CrossRefGoogle Scholar
  5. 5.
    Cowling, M., Sitte, R.: Comparison of techniques for enviromental sound recognition. Pattern Recognition Letters 24, 2895–2907 (2003)CrossRefGoogle Scholar
  6. 6.
    Orozco-García, J., Reyes, G., Carlos, A.: A study on the Recognition of Patterns of Infant Cry for the Identification of Deafness in Just Born Babies with neural Networks. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 348–349. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Albert Marzàbal
    • 1
  • Antoni Grau
    • 1
  • Yolanda Bolea
    • 1
  1. 1.Automatic Control DeptTechnical University of Catalonia UPCBarcelonaSpain

Personalised recommendations