Color Texture Segmentation by Decomposition of Gaussian Mixture Model

  • Jiří Grim
  • Petr Somol
  • Michal Haindl
  • Pavel Pudil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

Recently we have proposed Gaussian mixtures as a local statistical model to synthesize artificial textures. We describe the statistical dependence of pixels of a movable window by multivariate Gaussian mixture of product components. The mixture components correspond to different variants of image patches as they appear in the window. In this sense they can be used to identify different segments of the source color texture image. The segmentation can be obtained by means of Bayes formula provided that a proper decomposition of the estimated Gaussian mixture into sub-mixtures is available. In this paper the mixture model is decomposed by maximizing the mean probability of correct classification of pixels into segments in a way taking into account the assumed consistency of final segmentation.

References

  1. 1.
    Grim, J., Kittler, J., Pudil, P., Somol, P.: Multiple classifier fusion in probabilistic neural networks. Pattern Analysis & Applications 7(5), 221–233 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Grim, J., Haindl, M.: A discrete mixtures color texture model. In: Chantler, M. (ed.) Texture 2002. The 2nd International Workshop on Texture Analysis and Synthesis, Copenhagen 2002, pp. 59–62. Heriot-Watt Univ., Glasgow (2002)Google Scholar
  3. 3.
    Grim, J., Haindl, M.: Texture Modelling by Discrete Distribution Mixtures. Computational Statistics and Data Analysis 41(3-4), 603–615 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Grim, J., Somol, P., Haindl, M., Pudil, P.: A statistical approach to local evaluation of a single texture image. In: Nicolls, F. (ed.) Proceedings of the 16-th Annual Symposium PRASA 2005, University of Cape Town, pp. 171–176 (2005)Google Scholar
  5. 5.
    Haindl, M., Grim, J., Somol, P., Pudil, P., Kudo, M.: A Gaussian mixture-based color texture model. In: Proceedings of the 17th IAPR International Conference on Pattern Recognition, pp. 177–180. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  6. 6.
    Haindl, M., Grim, J., Pudil, P., Kudo, M.: A Hybrid BTF Model Based on Gaussian Mixtures. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005. Proceedings of the 4th International Workshop on Texture Analysis, pp. 95–100. IEEE, Los Alamitos (2005)Google Scholar
  7. 7.
    Heidemann, G., Ritter, H.: A neural 3-D object recognition architecture using optimized Gabor filters. In: Proceedings of the 13th IAPR International Conference on Pattern Recognition, vol. IV, pp. 70–74. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  8. 8.
    de Ridder, D., Kittler, J., Lemmers, O., Duin, R.P.W.: The adaptive sub-space map for texture segmentation. In: Sanfeliu, A., et al. (eds.) Proceedings of the 15th IAPR International Conference on Pattern Recognition, IAPR, pp. 216–220. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  9. 9.
    de Ridder, D., Kittler, J., Duin, R.P.W.: Probabilistic PCA and ICA subspace mixture models for image segmentation. In: Mirmehdi, M., et al. (eds.) Proceedings of the British Machine Vision Conference, pp. 112–121 (2000)Google Scholar
  10. 10.
    McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, New York (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Prague texture segmentation benchmark (2004), http://mosaic.utia.cas.cz
  12. 12.
    Reed, T.R., du Buf, J.M.H.: A review of recent texture segmentation and feature extraction techniques. CVGIP-Image Understanding 57, 359–372 (1993)CrossRefGoogle Scholar
  13. 13.
    Zwiggelaar, R., Planiol, P., Martí, R., Blot, L., Denton, E.R.E., Rubin, C.M.E.: EM Texture Segmentation of Mammographic Images. In: Proceedings of the 6-th International Workshop on Digital Mammography, Germany, pp. 541–543 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jiří Grim
    • 1
  • Petr Somol
    • 1
  • Michal Haindl
    • 1
  • Pavel Pudil
    • 1
  1. 1.Institute of Information Theory and AutomationAcademy of Sciences of the Czech RepublicPRAGUE 8Czech Republic

Personalised recommendations