Irregular Pyramid Segmentations with Stochastic Graph Decimation Strategies

  • Yll Haxhimusa
  • Adrian Ion
  • Walter G. Kropatsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


In this paper we use different decimation strategies in irregular pyramid segmentation framework, to produce perceptually important groupings. These graph decimation strategies, based on the maximum independent set concept, used in Borůvka’s minimum spanning tree based partitioning method, show similar discrepancy segmentation errors. Global and local consistency error measures do not show big differences between the methods although human visual inspection of the results show advantages for one method. To a certain extent this subjective impression is captured by the new criteria of ’region size variation’.


Segmentation Result Image Pyramid Minimum Weight Span Tree Region Adjacency Graph Human Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keselman, Y., Dickinson, S.: Generic model abstraction from examples. IEEE PAMI 27, 1141–1156 (2005)Google Scholar
  2. 2.
    Sudhir, B., Sarkar, S.: A framework for performance characterization of intermediate-level grouping modules. IEEE PAMI 19, 1306–1312 (1997)Google Scholar
  3. 3.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int’n J. of Computer Vision 59, 167–181 (2004)CrossRefGoogle Scholar
  4. 4.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22, 888–905 (2000)Google Scholar
  5. 5.
    Bister, M., Cornelis, J., Rosenfeld, A.: A critical view of pyramid segmentation algorithms. Patt. Recog. Lett. 11, 605–617 (1990)MATHCrossRefGoogle Scholar
  6. 6.
    Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular tesselations. IEEE PAMI 13, 307–316 (1991)Google Scholar
  7. 7.
    Cho, K., Meer, P.: Image segmentation from consensus information. Comp. Vis. and Im. Underst. 68, 72–89 (1997)CrossRefGoogle Scholar
  8. 8.
    Jolion, J.M., Rosenfeld, A.: A Pyramid Framework for Early Vision. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  9. 9.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: In Proc. of ICCV, vol. 2, pp. 416–423 (2001)Google Scholar
  10. 10.
    Neštřil, J., Miklovà, E., Neštřilova, H.: Otakar Boro̊vka on minimal spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233, 3–36 (2001)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kropatsch, W.G.: Building irregular pyramids by dual graph contraction. IEE-Proc. Vis., Im. and Signal Process. 142, 366–374 (1995)CrossRefGoogle Scholar
  12. 12.
    Haxhimusa, Y., Kropatsch, W.G.: Hierarchy of partitions with dual graph contraction. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 338–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Rosenfeld, A.: Pyramid algorithm for efficient vision. Technical Report CAR-TR-299, University of Maryland, Computer Science Center (1987)Google Scholar
  14. 14.
    Meer, P.: Stochastic image pyramids. Computer Vision, Graphics, and Image Processing 45, 269–294 (1989)CrossRefGoogle Scholar
  15. 15.
    Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z., Langs, G.: Vision pyramids that do not grow too high. Patt. Recog. Letters 26, 319–337 (2005)CrossRefGoogle Scholar
  16. 16.
    Jolion, J.M.: Stochastic pyramid revisited. Patt. Rec. Letters 24, 1035–1042 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Zhou, Y., Venkateswar, V., Chellappa, R.: Edge detection and linear feature extraction using the directional derivatives of a 2-d random field model. IEEE Trans. on PAMI 11, 84–95 (1989)Google Scholar
  18. 18.
    Zhang, Y.: A survey on evaluation methods for image segmentation. Patt. Recog. 29(8), 1335–1346 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yll Haxhimusa
    • 1
  • Adrian Ion
    • 1
  • Walter G. Kropatsch
    • 1
  1. 1.Faculty of Informatics, Pattern Recognition and Image Processing GroupVienna University of Technology 

Personalised recommendations