3D Mumford-Shah Based Active Mesh

  • Alexandre Dufour
  • Nicole Vincent
  • Auguste Genovesio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


Deformable mesh methods have become an alternative of choice to classical deformable models for 3D image understanding. They allow to render the evolving surface directly during the segmentation process in a fast and efficient way, avoiding both the additional time-cost and approximation errors induced by 3D reconstruction algorithms after segmentation. Current methods utilize edge-based forces to attract the mesh surface toward the image entities. These forces are inadequate in 3D fluorescence microscopy, where edges are not well defined by gradient. In this paper, we propose a fully automated deformable 3D mesh model that deforms using the reduced Mumford-Shah functional to segment and track objects with fuzzy boundaries. Simultaneous rendering of the mesh evolution allows faster tweaking of the model parameters and offers biologists a more precise insight on the scene and hence better understanding of biological phenomena. We present evaluations on both synthetic and real 3D microscopy data.


  1. 1.
    Chakraborty, A., Staib, L., Duncan, J.: Deformable Boundary Finding in Medical Images by Intergrating Gradient and Region Information. IEEE Transactions on Medical Imaging 15(6), 859–870 (1996)CrossRefGoogle Scholar
  2. 2.
    Xu, C., Pham, D., Rettman, M., Yu, D., Prince, J.: Reconstruction of the Human Cerebral Cortex from Magnetic Resonance Images. IEEE Transactions on Medical Imaging 18(6), 467–480 (1999)CrossRefGoogle Scholar
  3. 3.
    Paragios, N.: A Level Set Approach for Shape-Driven Segmentation and Tracking of the Left Ventricle. IEEE Transactions on Medical Imaging 22, 773–776 (2003)CrossRefGoogle Scholar
  4. 4.
    Sarti, A., de Solorzano, C.O., Lockett, S., Malladi, R.: A Geometric Model for 3D Confocal Image Analysis. IEEE Transactions on Biomedical Engineering 47(12), 1600–1609 (2000)CrossRefGoogle Scholar
  5. 5.
    Dufour, A., Shinin, V., Tajbaksh, S., Guillen, N., Olivo-Marin, J., Zimmer, C.: Segmenting and tracking fluorescent cells in dynamic 3d microscopy with coupled active surfaces. IEEE Transactions on Image Processing 14(9), 1396–1410 (2005)CrossRefGoogle Scholar
  6. 6.
    Miller, J.: Geometrically deformed models for the extraction of closed shapes from volume data. Master’s thesis, Rensselaer Polytechnic Institute, New York (1990)Google Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Cohen, L., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1131–1147 (1993)CrossRefGoogle Scholar
  9. 9.
    Szeliski, R., Terzopoulos, D.: Physically based and probabilistic models for computer vision. In: Geometric Methods in Computer Vision, vol. 1570, pp. 140–152 (1991)Google Scholar
  10. 10.
    Staib, L., Duncan, J.: Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(11), 1061–1075 (1992)CrossRefGoogle Scholar
  11. 11.
    Delingette, H.: General object reconstruction based on simplex meshes. International Journal on Computer Vision 32, 111–146 (1999)CrossRefGoogle Scholar
  12. 12.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics 5, 62–73 (1999)CrossRefGoogle Scholar
  13. 13.
    Lachaud, J., Montanvert, A.: Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Medical Image Analysis 3(2), 187–207 (1999)CrossRefGoogle Scholar
  14. 14.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Com. Pure App. Math. 42, 577–684 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Tsai, A., Yezzi, A., Willsky, A.: Curve Evolution Implementation of the Mumford Shah Functional for Image Segmentation, Denoising, Interpolation, and Magnification. IEEE Transactions on Image Processing 10(8), 1169–1186 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Cremers, D., Tischhauser, F., Weickert, J., Schnorr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional. International Journal on Computer Vision 50, 295–313 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Zimmer, C., Olivo-Marin, J.C.: Coupled Parametric Active Contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1838–1842 (2005)CrossRefGoogle Scholar
  19. 19.
    Delingette, H.: Modelisation, Deformation et Reconnaissance d’Objets Tridimensionnels a l’Aide de Maillages Simplexes. PhD thesis, Ecole Centrale de Paris (1994)Google Scholar
  20. 20.
    Loop, C.: Smooth Subdivion Surfaces based on Triangles. PhD thesis, University of Utah (1987)Google Scholar
  21. 21.
    Ciofolo, C.: Segmentation des formes guidee par des modeles en neuro-imagerie. PhD thesis, Universite Rennes I (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandre Dufour
    • 1
    • 2
  • Nicole Vincent
    • 2
  • Auguste Genovesio
    • 1
  1. 1.Image Mining groupInstitut Pasteur Korea 
  2. 2.Systèmes Intelligents de Perception, Centre de Recherche en Informatique de Paris 5Université René Descartes 

Personalised recommendations