A Method for Detection and Modeling of the Human Spine Based on Principal Curvatures

  • Y. Santiesteban
  • J. M. Sanchiz
  • J. M. Sotoca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


The detection and modeling of the human spine from scanned 3D data is an important issue in biomedical shape analysis. It can be useful for avoiding invasive treatments like radiographs, taken for the purpose of monitoring spine deformations and its correction, as is the cases in scoliosis. This is especially important with children.

This work presents a new method for the detection of the human spine from 3D models of human backs formed by triangular meshes, and taken with a range sensor. The method is based on the estimation of the principal curvatures directions, and by joining valley points along these directions. Results are presented with the method applied to scanned 3D models of real patients.


Principal Curvature Triangular Mesh Geodesic Distance Back Surface Cluster Centroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Archer, I.A., Dickson, R.A.: Stature and idiopathic scoliosis. A prospective study. Journal of Bone Joint Surg 67, 185–188 (1985)Google Scholar
  2. 2.
    Frobin, W., Hierholzer, E.: Rasterstereography: a photogrametric method for measurement of body surfaces. Photogrammetric Engineering and Remote Sensing 47, 1717–1724 (1982)Google Scholar
  3. 3.
    Buendía, M., Salvador, R., Cibrian, R., Laguía, M., Sotoca, J.M.: Determination of the object surface function by structured light: applications to the study of spinal deformities. Med. Phys. Biol. (44), 75–86 (1999)CrossRefGoogle Scholar
  4. 4.
    Takasaki, H.: Moiré Topography. Applied Optics 9, 1467–1472 (1970)CrossRefGoogle Scholar
  5. 5.
    Turner-Smith, A.R.: A Television/Computer three-dimensional surface shape measurement system. Journal of biomechanics 21, 515–529 (1988)CrossRefGoogle Scholar
  6. 6.
    Drerup, B., Hierholzer, E.: Automatic localization of anatomical landmarks on the back surface and construction of a body-fixed coordinate system. Journal of Biomechanics 20(10), 961–970 (1987)CrossRefGoogle Scholar
  7. 7.
    Frobin, W., Hierholzer, E.: Analysis of human back shape using surface curvatures. Journal of Biomechanics (15), 379–390 (1982)CrossRefGoogle Scholar
  8. 8.
    Sotoca, J.M., Buendía, M., Iñesta, J.M., Ferri, F.J.: Geometric properties of the 3D spine curve. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 1003–1011. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: Their Training and application. Computer vision and image understanding (61), 38–59 (1995)CrossRefGoogle Scholar
  10. 10.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)MATHGoogle Scholar
  11. 11.
    O’Neill, B.: Elementrary Differential Geometry, 2nd edn. Academic Press, Orlando (1997)Google Scholar
  12. 12.
    Besl, P.J., Jain, R.C.: Invariant surface characteristics for 3d object recognition in range images. Computer Vision, Graphics, and Image Processing (33), 33–80 (1986)CrossRefGoogle Scholar
  13. 13.
    Brady, M., Ponce, J., Yuille, A., Asada, H.: Describing surfaces. Computer Vision, Graphics, and Image Processing (32), 1–28 (1985)CrossRefGoogle Scholar
  14. 14.
    Feldmar, J., Ayache, N.: Rigid and affine registration of smooth surfaces using differential properties. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 397–406. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Medioni, G., Nevatia, R.: Description of 3-D surfaces using curvature properties. In: Proceedings, DARPA Image Understanding Workshop, New Orleans, LA, pp. 291–299 (1984)Google Scholar
  16. 16.
    Guéziec, A., Ayache, N.: Smoothing and matching of 3d space curves. International Journal of Computer Vision (12), 79–104 (1994)CrossRefGoogle Scholar
  17. 17.
    Monga, O., Benayoun, S., Faugeras, O.: From partial derivatives of 3d density images to ridge lines. In: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, pp. 354–359 (1992)Google Scholar
  18. 18.
    Chen, X., Schmitt, F.: Intrinsic surface properties from surface triangulation. In: Proceedings of the European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 739–743 (1992)Google Scholar
  19. 19.
    Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, A.: Normal Vector Voting: Crease detection and curvature estimation on large, noisy meshes. Journal of Graphical Models 64, 1–31 (2003)Google Scholar
  20. 20.
    Hagen, H., Heinz, S., Thesing, M., Schreiber, T.: Simulation based modeling. Int. J. Shape Modeling (4), 143–164 (1998)CrossRefGoogle Scholar
  21. 21.
    Rössl, C., Kobbelt, L., Seidel, H.: Extraction of feature lines on triangulated surfaces using morphological operators. In: Smart Graphics AAAI Symposium 2000, pp. 71–75. AAAI Press, Menlo Park (2000)Google Scholar
  22. 22.
    Lin, C., Perry, M.J.: Shape description using surface triangulation. In: Proceedings of the IEEE Workshop on Computer Vision: Representation and Control, pp. 38–43 (1982)Google Scholar
  23. 23.
    Martin, R.R.: Estimation of principal curvatures from range data. Int. J. Shape Modeling (4), 99–109 (1998)CrossRefGoogle Scholar
  24. 24.
    Tookey, R.M., Ball, A.A.: Estimation of curvatures from planar point data. In: The Mathematics of Surfaces VII, Information Geometers, Winchester, pp. 131–141 (1997)Google Scholar
  25. 25.
    Várady, T., Hermann, T.: Best fit surface curvature at vertices of topologically irregular curve networks. The Mathematics of Surfaces VI, pp. 411–427. Oxford University Press, Oxford (1996)Google Scholar
  26. 26.
    Tang, C.K., Medioni, G.: Robust estimation of curvature information from noisy 3D data for shape description. In: Proceedings of the Seventh International Conference on Computer Vision, Kerkyra, Greece, pp. 426–433 (1999)Google Scholar
  27. 27.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the Fifth International Conference on Computer Vision, pp. 902–907 (1995)Google Scholar
  28. 28.
    Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In: VisMath 2002, Berlin, Germany (2002)Google Scholar
  29. 29.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. National Academy of Sciences, 8431–8435 (1998)Google Scholar
  31. 31.
    Sun, Y., Abidi, M.A.: Surface matching by 3D points fingerprint. In: Proceedings of the Eighth International Conference On Computer Vision, vol. 2, pp. 263–269 (2001)Google Scholar
  32. 32.
    Hill, D.R.: A vector clustering technique. In: Samuelson (ed.) Mechanized Information Storage, Retrieval and Dissemination, North-Holland, Amsterdam (1968)Google Scholar
  33. 33.
    Street, J.O., Carroll, R.J., Ruppert, D.: A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares. The American Statistician (42), 152–154 (1988)CrossRefGoogle Scholar
  34. 34.
    Holland, P.W., Welsch, R.E.: Robust Regression Using Iteratively Reweighted Least-Squares. Communications in Statistics: Theory and Methods A6, 813–827 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Y. Santiesteban
    • 1
  • J. M. Sanchiz
    • 2
  • J. M. Sotoca
    • 2
  1. 1.Universidad de OrienteSantiago de CubaCuba
  2. 2.Universidad Jaume ICastellónSpain

Personalised recommendations