In-Vivo IVUS Tissue Classification: A Comparison Between RF Signal Analysis and Reconstructed Images

  • Karla L. Caballero
  • Joel Barajas
  • Oriol Pujol
  • Neus Salvatella
  • Petia Radeva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)


In this paper we present a novel framework for classification of the different kind of tissues in intravascular ultrasound (IVUS) data. We expose a normalized reconstruction of the IVUS images from radio frequency (RF) signals, and the use of these signals for classification. The reconstructed data is described in terms of texture based features and feeds an ECOC-Adaboost learning process. In the same manner, the RF signals are characterize using Autoregressive models, and classified with a similar learning process. A comparison is performed among these techniques and with DICOM based classification ones obtaining very promising results.


Local Binary Pattern Intravascular Ultrasound Gabor Filter Radio Frequency Signal DICOM Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. Journal of the Optical Society of America 2(A), 1160–1169 (1985)Google Scholar
  2. 2.
    Feichtinger, H.G., Strohmer, T. (eds.): Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser (1998)Google Scholar
  3. 3.
    Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 4, 291–310 (1999)CrossRefGoogle Scholar
  4. 4.
    Iwamoto, T., Tanaka, A., Saijo, Y., Yoshizawa, M.: Coronary plaque classification through intravascular ultrasound radiofrequency data analysis using self-organizing map. In: IEEE Ultrasonics Symposium, pp. 2054–2057 (2005)Google Scholar
  5. 5.
    Jeremias, A., Kolz, M., Ikonen, T., Gummert, J., Oshima, A.: Feasibility of in vivo intravascular ultrasound tissue characterization in the detection of early vascular transplant rejection. Circulation 100, 2127–2130 (1999)Google Scholar
  6. 6.
    Kay, S.: Modern Spectral Estimation. Theory and Application. Prentice-Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  7. 7.
    Nair, A., Calvetti, D., Vince, G.: Regularized autoregressive analysis of intravascular ultrasound backscatter: Improvement in spatial accuracy of tissue maps. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control 51, 420–431 (2004)CrossRefGoogle Scholar
  8. 8.
    Nair, A., Kuban, B., Murat, E., Schoenhagen, P., Nissen, S., Vince, D.: Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Ciculation 106, 2200–2206 (2002)CrossRefGoogle Scholar
  9. 9.
    Nair, A., Kuban, B.D., Obuchowski, N., Vince, G.: Assesing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound in Medicine & Biology 27, 1319–1331 (2001)CrossRefGoogle Scholar
  10. 10.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Dubes, R., Ohanian, P.: Performance evaluation for four classes of textural features. Pattern Recognition 25, 819–833 (1992)CrossRefGoogle Scholar
  12. 12.
    Proakis, J., Rader, C., Ling, F., Nikias, C.: Advanced Digital Signal Processing. Mc Millan (1992)Google Scholar
  13. 13.
    Pujol, O.: A semi-supervised Statistical Framework and Generative Snakes for IVUS Analysis. Graficas Rey (2004)Google Scholar
  14. 14.
    Pujol, O., Radeva, P., Vitria, J.: Discriminant ecoc: A heuristic method for application dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1001–1007 (2006)CrossRefGoogle Scholar
  15. 15.
    Pujol, O., Rosales, M., Radeva, P.: Intravascular ultrasound images vessel characterization using adaboost. In: Functional Imaging and Modelling of the Heart. LNCS, pp. 242–251 (2003)Google Scholar
  16. 16.
    Schapire, R.: The boosting approach to machine learning: An overview (2001)Google Scholar
  17. 17.
    Viola, P., Jones, M.: Robust real-time object detection. In: CVPR 2001, vol. 1, p. 511 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Karla L. Caballero
    • 1
  • Joel Barajas
    • 1
  • Oriol Pujol
    • 1
    • 2
  • Neus Salvatella
    • 3
  • Petia Radeva
    • 1
  1. 1.Computer Vision CenterUAB BellaterraBarcelonaSpain
  2. 2.Dept. Matemàtica Aplicada i Anàlisi.University of BarcelonaBarcelonaSpain
  3. 3.Hospital Universitari German Trias i PujolBadalonaSpain

Personalised recommendations