Advertisement

A Fast Adaboosting Based Method for Iris and Pupil Contour Detection

  • Francisco Silva Mata
  • Eduardo Garea Llano
  • Estela María Álvarez Morales
  • José Luís Gil Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4225)

Abstract

The iris localization plays a fundamental role in the recognition process because the speed and performance of the iris recognition system largely depends on the quality of the pupil and iris detection. This process includes the detection of inner (pupil) and outer (iris) boundaries. In this paper we present a new method for iris and pupil boundaries detection based on Adaboosting technique for localization of circular objects and an algorithm based on the elements of analytic geometry, in particular, the determination of the bounded circumference of a tangential square that encloses the pupil and iris. The proposed approach overcomes the limitations that had previous methods regarding the use of images obtained under not controlled conditions like specular light reflected in the pupil or in the iris. We experimented our approach comparing the results in detection with the results obtained by Daugman algorithm using images from two contrasting databases, CASIA and UBIRIS.

References

  1. 1.
    Daugman, J.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1160 (1993)CrossRefGoogle Scholar
  2. 2.
    Daugman, J.: Demodulation by Complex-Valued Wavelets for Stochastic Pattern Recognition. International Journal of Wavelets, Multiresolution and Information Processing 1(1), 1–17 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Center for Biometrics and Security Research (CBSR). CASIA Iris Image Database, http://www.sinobiometrics.com
  4. 4.
    Cui, J., Wang, Y., Tan, T., Ma, L., Sun, Z.: A Fast and Robust Iris Localization Method Based on Texture Segmentation, Center for Biometric Authentication and Testing, National Laboratory of Pattern Recognition. Disponible en internet (2005)Google Scholar
  5. 5.
    Wildes, R.: Iris Recognition: An Emerging Biometric Technology. Proceedings of the IEEE 85, 1348–1363 (1997)CrossRefGoogle Scholar
  6. 6.
    Camus, T.A., Wildes, R.: Reliable and Fast Eye Finding in Close-up Images. In: Proceedings of the IEEE International Conference on Pattern Recognition (2002)Google Scholar
  7. 7.
    Gil, J.L., Díaz, Y.: A New Method for Iris Pupil Contour Delimitation and its Application in Iris Texture Parameter Estimation. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 631–641. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Center for Biometrics and Security Research (CBSR). CASIA Iris Image Database, http://www.sinobiometrics.com
  9. 9.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. Mitsubishi Electric Research Laboratories, Inc., 201 Broadway, Cambridge, Massachusetts 02139 (2004)Google Scholar
  10. 10.
    Rainer, L.: Haarcascade_frontalface_default.xml. Intel License Agreement For Open Source Computer Vision Library (2000)Google Scholar
  11. 11.
    UBIRIS Database. Departamento de Informática da Universidade da Beira Interior, URL: http://iris.di.ubi.pt/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francisco Silva Mata
    • 1
  • Eduardo Garea Llano
    • 1
  • Estela María Álvarez Morales
    • 1
  • José Luís Gil Rodríguez
    • 1
  1. 1.Advanced Technology Application CenterSiboney PlayaCuba

Personalised recommendations