Multilayered Semantic Social Network Modeling by Ontology-Based User Profiles Clustering: Application to Collaborative Filtering

  • Iván Cantador
  • Pablo Castells
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4248)


We propose a multilayered semantic social network model that offers different views of common interests underlying a community of people. The applicability of the proposed model to a collaborative filtering system is empirically studied. Starting from a number of ontology-based user profiles and taking into account their common preferences, we automatically cluster the domain concept space. With the obtained semantic clusters, similarities among individuals are identified at multiple semantic preference layers, and emergent, layered social networks are defined, suitable to be used in collaborative environments and content recommenders.


User Preference User Profile Domain Ontology Collaborative Filter Cluster Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alani, H., O’Hara, K., Shadbolt, N.: ONTOCOPI: Methods and Tools for Identifying Communities of Practice. Intelligent Information Processing 2002, 225–236 (2002)Google Scholar
  2. 2.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: INTRIGUE: personalized recommendation of tourist attractions for desktop and handset devices. In: Applied Artificial Intelligence, Special Issue on Artificial Intelligence for Cultural Heritage and Digital Libraries, vol. 17(8-9), pp. 687–714. Taylor and Francis, Abington (2003)Google Scholar
  3. 3.
    Balabanovic, M., Shoham, Y.: Content-Based Collaborative Recommendation. Communications ACM, 66–72 (1997)Google Scholar
  4. 4.
    Cohen, P.R., Kjeldsen, R.: Information Retrieval by Constrained Spreading Activation in Semantic Networks. Information Processing and Management 23(2), 255–268 (1987)CrossRefGoogle Scholar
  5. 5.
    Crestani, F., Lee, P.L.: Searching the web by constrained spreading activation. Information Processing & Management 36(4), 585–605 (2000)CrossRefGoogle Scholar
  6. 6.
    Duda, R.O., Hart, P., Stork, D.G.: Pattern Classification. John Wiley, Chichester (2001)MATHGoogle Scholar
  7. 7.
    Linden, G., Smith, B., York, J.: Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7(1), 76–80 (2003)CrossRefGoogle Scholar
  8. 8.
    Liu, H., Maes, P., Davenport, G.: Unraveling the Taste Fabric of Social Networks. International Journal on Semantic Web and Information Systems 2(1), 42–71 (2006)CrossRefGoogle Scholar
  9. 9.
    McCarthy, J., Anagnost, T.: MusicFX: An arbiter of group preferences for computer supported collaborative workouts. In: ACM International Conference on Computer Supported Cooperative Work (CSCW 1998), Seattle, Washington, pp. 363–372 (1998)Google Scholar
  10. 10.
    Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Mika, P.: Flink: Semantic Web technology for the extraction and analysis of social networks. Web Semantics: Science, Services and Agents on the WWW 3(2-3), 211–223 (2005)CrossRefGoogle Scholar
  12. 12.
    Montaner, M., López, B., Lluís de la Rosa, J.: Taxonomy of Recommender Agents on the Internet. Artificial Intelligence Review 19, 285–330 (2003)CrossRefGoogle Scholar
  13. 13.
    O’Conner, M., Cosley, D., Konstan, J.A., Riedl, J.: PolyLens: A recommender system for groups of users. In: 7th European Conference on Computer Supported Cooperative Work (ECSCW 2001), Bonn, Germany, pp. 199–218 (2001)Google Scholar
  14. 14.
    Sarwar, B.M., et al.: Item-Based Collaborative Filtering Recommendation Algorithms. In: 10th International World Wide Web Conference, pp. 285–295. ACM Press, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Ungar, L., Foster, D.: Clustering Methods for Collaborative Filtering. In: Proceedings of the Workshop on Recommendation Systems at the 15th National Conference on Artificial Intelligence. AAAI Press, Menlo Park (1998)Google Scholar
  16. 16.
    Vallet, D., Mylonas, P., Corella, M.A., Fuentes, J.M., Castells, P., Avrithis, Y.: A Semantically-Enhanced Personalization Framework for Knowledge-Driven Media Services. In: IADIS WWW/Internet Conference (ICWI 2005), Lisbon, Portugal (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Iván Cantador
    • 1
  • Pablo Castells
    • 1
  1. 1.Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain

Personalised recommendations