Advertisement

Frequent Pattern Discovery from OWL DLP Knowledge Bases

  • Joanna Józefowska
  • Agnieszka Ławrynowicz
  • Tomasz Łukaszewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4248)

Abstract

The Semantic Web technology should enable publishing of numerous resources of scientific and other, highly formalized data on the Web. The application of mining these huge, networked Web repositories seems interesting and challenging. In this paper we present and discuss an inductive reasoning procedure for mining frequent patterns from the knowledge bases represented in OWL DLP. OWL DLP, also known as Description Logic Programs, lies at the intersection of the expressivity of OWL DL and Logic Programming. Our method is based on a special trie data structure inspired by similar, efficient structures used in classical and relational data mining settings. Conjunctive queries to OWL DLP knowledge bases are the language of frequent patterns.

Keywords

Association Rule Frequent Pattern Description Logic Conjunctive Query Reference Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  3. 3.
    Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.: Improving the efficiency of Inductive Logic Programming through the use of query packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)Google Scholar
  4. 4.
    Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining and Knowledge Discovery 3(1), 7–36 (1999)CrossRefGoogle Scholar
  5. 5.
    Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog and description logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  6. 6.
    Dzeroski, S., Lavrac, N. (eds.): Relational data mining. Springer, Heidelberg (2001)MATHGoogle Scholar
  7. 7.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Proc. of the Twelfth Int’l World Wide Web Conf (WWW 2003), pp. 48–57. ACM Press, New York (2003)CrossRefGoogle Scholar
  8. 8.
    Hitzler, P., Studer, R., Sure, Y.: Description Logic Programs: A Practical Choice For the Modelling of Ontologies. In: Proc. of the 1st Workshop on Formal Ontologies meet Meet Industry, FOMI 2005, Verona, Italy (2005)Google Scholar
  9. 9.
    Józefowska, J., Ławrynowicz, A., Łukaszewski, T.: Towards discovery of frequent patterns in description logics with rules. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 84–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Józefowska, J., Ławrynowicz, A., Łukaszewski, T.: Faster frequent pattern mining from the Semantic Web. In: Intelligent Information Processing and Web Mining Conference, IIS:IIPWM 2006. Advances in Soft Computing, pp. 121–130. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relation. Machine Learning Journal 55, 175–210 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  13. 13.
    Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Motik, B., Sattler, U.: Practical DL Reasoning over Large ABoxes with KAON2 (Submitted for publication)Google Scholar
  15. 15.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Nijssen, S., Kok, J.N.: Faster Association Rules for Multiple Relations. In: Proceedings of the IJCAI 2001, pp. 891–897 (2001)Google Scholar
  17. 17.
    Nijssen, S., Kok, J.N.: Efficient frequent query discovery in FARMER. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 350–362. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joanna Józefowska
    • 1
  • Agnieszka Ławrynowicz
    • 1
  • Tomasz Łukaszewski
    • 1
  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznanPoland

Personalised recommendations