Advertisement

USER: User-Sensitive Expert Recommendations for Knowledge-Dense Environments

  • Colin DeLong
  • Prasanna Desikan
  • Jaideep Srivastava
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4198)

Abstract

Traditional recommender systems tend to focus on e-commerce applications, recommending products to users from a large catalog of available items. The goal has been to increase sales by tapping into the user’s interests by utilizing information from various data sources to make relevant recommendations. Education, government, and policy websites face parallel challenges, except the product is information and their users may not be aware of what is relevant and what isn’t. Given a large, knowledge-dense website and a nonexpert user searching for information, making relevant recommendations becomes a significant challenge. This paper addresses the problem of providing recommendations to non-experts, helping them understand what they need to know, as opposed to what is popular among other users. The approach is usersensitive in that it adopts a ‘model of learning’ whereby the user’s context is dynamically interpreted as they browse and then leveraging that information to improve our recommendations.

Keywords

Recommender System Collaborative Filter Concept Graph Content Management System Anchor Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Adomavicius, G., Tuzhilin, A.: Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17 (June 2005)Google Scholar
  5. 5.
    Burke, R.: Hybrid recommender systems: Survey and experiments. In: User Modeling and User-Adapted Interaction (2002)Google Scholar
  6. 6.
    Balabanovic, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Comm. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  7. 7.
    Gray, M.H.: Personalised, Collaborative Spam Filtering. In: Proceedings of First Conference on Email and Anti-Spam (CEAS) (July 2004)Google Scholar
  8. 8.
    Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and Evaluating Choices in a Virtual Community of Use. In: Proc. Conf. Human Factors in Computing Systems (1995)Google Scholar
  9. 9.
    Ishikawa, H., Ohta, M., Yokoyama, S., Nakayama, J., Katayama, K.: On the Effectiveness of Web Usage Mining for Page Recommendation and Restructuring. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593, pp. 253–267. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Comm. ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  11. 11.
    Li, J., Zaïane, O.R.: Combining Usage, Content, and Structure Data to Improve Web Site Recommendation. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web 2004. LNCS, vol. 3182, pp. 305–315. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Mobasher, B.: Web Usage Mining and Personalization. In: Singh, M.P. (ed.) Practical Handbook of Internet Computing. CRC Press, Boca Raton (2005)Google Scholar
  13. 13.
    Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., Riedl, J.: MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System. In: Proc. Int’l. Conf. Intelligent User Interfaces (2003)Google Scholar
  14. 14.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic Personalization Based on Web Usage Mining. Communication of ACM 43(8) (August 2000)Google Scholar
  15. 15.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Stanford Digital Library Technologies (January 1998)Google Scholar
  16. 16.
    Perugini, S., Goncalves, M.A., Fox, E.A.: A connection centric survey of recommender system research. Journal of Intelligent Information Systems (2004)Google Scholar
  17. 17.
    Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. 1994 Computer Supported Cooperative Work Conf. (1994)Google Scholar
  18. 18.
    Resnick, P., Varian, H.R.: ‘Recommender Systems’. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  19. 19.
    Spiliopoulou, M.: Web usage mining for Web site evaluation. Communications of the ACM 43(8), 127–134 (2000)CrossRefGoogle Scholar
  20. 20.
    Srivastava, J., Desikan, P., Kumar, V.: Web Mining - Concepts, Applications and Research Directions. In: Data Mining: Next Generation Challenges and Future Directions, MIT/AAAI (2004)Google Scholar
  21. 21.
    Schafer, J.B., Konstan, J., Riedl, J.: Recommender Systems in E-Commerce. In: EC 1999: Proceedings of the First ACM Conference on Electronic Commerce, Denver, CO, pp. 158–166 (1999)Google Scholar
  22. 22.
    Schafer, J.B., Konstan, J.A., Riedl, J.: E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)MATHCrossRefGoogle Scholar
  23. 23.
    Terveen, L., Hill, W.: Human-Computer Collaboration in Recommender Systems. In: Carroll, J. (ed.) Human Computer Interaction in the New Millenium, Addison-Wesley, New York (2001)Google Scholar
  24. 24.
    Li, J., Zaiane, O.R.: Using Distinctive Information Channels for a Mission-based Web Recommender System. In: Proc. of WebKDD (2004)Google Scholar
  25. 25.
    DeLong, C., Desikan, P., Srivastava, J.: USER (User Sensitive Expert Recommendation): What Non-Experts NEED to Know. In: Nasraoui, O., Zaïane, O.R., Spiliopoulou, M., Mobasher, B., Masand, B., Yu, P.S. (eds.) WebKDD 2005. LNCS (LNAI), vol. 4198, pp. 77–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Huang, Z., Chen, H., Zeng, D.: Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering. ACM Transactions on Information Systems 22(1), 116–142 (2004)CrossRefGoogle Scholar
  28. 28.
    Huang, Z., Chung, W., Chen, H.: A Graph Model for E-Commerce Recommender Systems. JASIST 55(3), 259–274 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Colin DeLong
    • 1
  • Prasanna Desikan
    • 2
  • Jaideep Srivastava
    • 2
  1. 1.College of Liberal ArtsUniversity of MinnesotaMinneapolisUnited States of America
  2. 2.Department of Computer ScienceUniversity of MinnesotaMinneapolisUnited States of America

Personalised recommendations