Determination of Ancient Manufacturing Techniques of Ceramics by 3D Shape Estimation

  • Hubert Mara
  • Robert Sablatnig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4270)


We propose a rotational symmetry evaluation method that is used to determine the manufacturing technique of rotationally symmetric pottery like vessels. With the help of scanned 3D data of the surface of the vessel the symmetry is determined which is used to derive the manufacturing technique for this particular vessel. For example it can be determined whether or not a turning wheel was used to manufacture the vessel. Results for trditionally manufactured new vessels and ancient vessels are given and the applicability of the method in archaeology is shown.


Structure Light Bottom Plane Rotational Plate Horizontal Intersection Manual Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carmichael, P.H.: NASCA Pottery Construction. In: Nawpa Pacha, vol. 24, Berkeley, California (1986)Google Scholar
  2. 2.
    Cosmas, J., Itagaki, T., Green, D., Grabczewski, E., Van Gool, L., Zalesny, A., Vanrintel, D., Leberl, F., Grabner, M., Schindler, K., Karner, K., Gervautz, M., Hynst, S., Waelkens, M., Pollefeys, M., DeGeest, R., Sablatnig, R., Kampel, M.: 3D MURALE: A Multimedia System for Archaeology. In: Proceedings of the International Conference on Virtual Reality, Archaeology and Cultural Heritage, Athens, Greece, November 2001, pp. 297–305 (2001)Google Scholar
  3. 3.
    DePiero, F.W., Trivedi, M.M.: 3-D Computer Vision Using Structured light: Design, Calibration, and Implementation Issues. Advances in Computers 43, 243–278 (1996)CrossRefGoogle Scholar
  4. 4.
    Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT 34, 558–578 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kampel, M., Sablatnig, R.: On 3d Modelling of Archaeological Sherds. In: Proceedings of the International Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging, pp. 95–98 (1999)Google Scholar
  6. 6.
    Lettner, M., Mara, H., Müller, A., Sablatnig, R., Singer, M., Krenn, M.: PAT: Profile Analysis Tool for the Documentation of Archaeological Finds. In: Proc. of Electronic Imaging & the Visual Art (EVA 2006 Vienna) - Digital Cultural Heritage - Essential for Tourism (2006) (accepted/ to appear)Google Scholar
  7. 7.
    Leute, U.: Archaeometry: An Introduction to Physical Methods in Archaeology and the History of Art. John Wiley & Sons, Chichester (1987)Google Scholar
  8. 8.
    Liska, C.: Das Adaptive Lichtschnittverfahren zur Oberflächenkonstruktion mittels Laserlicht. Master’s thesis, Vienna University of Technology, Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image Processing Group (April 1999)Google Scholar
  9. 9.
    Mara, H.: Documentation of rotationally symmetrical archaeological finds by 3d shape estimation. Technical Report PRIP-TR-103, Vienna University of Technology, Inst. of Computer Aided Automation, Pattern Recognition and Image Processing Group (2003)Google Scholar
  10. 10.
    Mara, H., Hecht, N.: 3D-Acquisition and Analysis of freehand manufactured NASCA Ceramics. In: Proc. of CAA 2006: Computer Aplications an Quantitative Methods in Archaeology (to appear, April 2006)Google Scholar
  11. 11.
    Mara, H., Kampel, M.: Automated Extraction of Profiles from 3D Models of Archaeological Fragments. In: Altan, O. (ed.) Proc. of CIPA2003: XIX CIPA Int. Symposium: New Perspectives to Save Cultural Heritage. CIPA 2003 organising committe, pp. 87–93 (2003)Google Scholar
  12. 12.
    Melero, F.J., Leon, A., Contreras, F., Torres, J.C.: A new system for interactive vessel reconstruction and drawing. In: Proceedings of CAA 2003: Computer Applications in Archaeology, April 2003, pp. 8–12 (2003)Google Scholar
  13. 13.
    Orriols, X.: Generative Models for Video Analysis and 3D Range Data Applications. Ph.D. thesis. Universitat Autonoma de Barcelona, Spain (2004)Google Scholar
  14. 14.
    Pottmann, H., Randrup, T.: Rotational and helical surface approximation for reverse engineering. Computing 60, 307–322 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Reindel, M., Cuadrado, J.I.: Los Molinos und La Muna. Zwei Siedlungszentren der Nasca-Kultur in Palpa, Südperu. In: von Zabern, P. (ed.) Beiträge zur Allgemeinen und Vergleichenden Archäologie, vol. 21 (2001)Google Scholar
  16. 16.
    Sablatnig, R., Menard, C., Dintsis, P.: A Preliminary Study on Methods for a Pictorial Acquisition of Archaeological Finds. Technical Report PRIP-TR-010, Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image Processing Group (1991)Google Scholar
  17. 17.
    Tosovic, S.: Adaptive 3D Modeling of Objects by combining Shape from Silhouette and Shape from Structured Light. Master’s thesis, Vienna University of Technology, Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image Processing Group (February 2002)Google Scholar
  18. 18.
    Wieczorek, A., Tellenbach, M.: Exkurs zur Frage der Drehscheibenkeramik. In: An die Mächte der Natur - Mythen der altperuanischen Nasca-Indianer. Katalog zur Ausstellung im Reiss-Engelhorn-Museum, pp. 54–63. Philipp von Zabern, Mainz (2002)Google Scholar
  19. 19.
    Willis, R.: Stochastic 3D Geometric Models for Classification, Deformation, and Estimation. Ph.D. thesis. Brown University, Rhode Island, USA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hubert Mara
    • 1
  • Robert Sablatnig
    • 1
  1. 1.Institute for Computer Aided Automation, Pattern Recognition and Image Processing GroupVienna University of TechnologyViennaAustria

Personalised recommendations