Advertisement

Orthogonal Least Square RBF Based Implicit Surface Reconstruction Methods

  • Xiaojun Wu
  • Michael Yu Wang
  • Qi Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4270)

Abstract

Two contributions on 3D implicit surface reconstruction from scattered points are presented in this paper. Firstly, least square radial basis functions (LS RBF) are deduced from the conventional RBF formulations, which makes it possible to use fewer centers when reconstruction. Then we use orthogonal least square (OLS) method to select significant centers from large and dense point data sets. From the selected centers, an implicit continuous function is constructed efficiently. This scheme can overcome the problem of numerical ill-conditioning of coefficient matrix and over-fitting. Experimental results show that our two methods are efficient and highly satisfactory in perception and quantification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Park, J., Sandberg, J.W.: Universal approximation using radial basis functions network. Neural Computation 3, 246–257 (1991)CrossRefGoogle Scholar
  2. 2.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface renstruction from unorganized points. In: Proceedings of ACM SIGGRAPH 1992, pp. 71–78 (1992)Google Scholar
  3. 3.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of ACM SIGGRAPH 1998, pp. 415–421 (1998)Google Scholar
  4. 4.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)Google Scholar
  5. 5.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Transactions on Graphics, Proceedings of SIGGRAPH 22(3), 463–470 (2003)Google Scholar
  6. 6.
    Tobor, P., Reuter, Schilck, C.: Efficient reconstruction of large scattered geometric datasets using the partition of unity and radial basis functions. Journal of WSCG 2004 12, 467–474 (2004)Google Scholar
  7. 7.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)Google Scholar
  8. 8.
    Turk, G., O’brien, J.: Modelling with implicit surfaces that interpolate. ACM Transactions on Graphics 21(4), 855–873 (2002)CrossRefGoogle Scholar
  9. 9.
    Ohtake, Y., Belyaev, A.G., Seidel, H.P.: A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions. In: Shape Modeling International SMI, pp. 153–161 (2003)Google Scholar
  10. 10.
    Ohtake, Y., Belyaev, A., Seidel, H.: 3D Scattered Data Approximation with Adaptive Compactly Supported Radial Basis Functions. In: Shape Modeling and Applications SMI, pp. 31–39 (2004)Google Scholar
  11. 11.
    Morse, B., Yoo, T.S., Rheingans, P., et al.: Interpolating implicit surfaces from scattered surfaces data using compactly supported radial basis functions. In: Proceedings of Shape Modeling International SMI, pp. 89–98 (2001)Google Scholar
  12. 12.
    Beatson, R.K., Light, W.A., Billings, S.: Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J. Sci. Comput. 22(5), 1717–1740 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tobor, I., Reuter, P., Schlick, C.: Multiresolution reconstruction of implicit surfaces with attributes from large unorganized point sets. In: Proceedings of Shape Modeling International SMI, pp. 19–30 (2004)Google Scholar
  14. 14.
    Beatson, B., Newsam, G.: Fast evaluation of radial basis functions. Computational Mathematics and Applications 24(12), 7–20 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chen, S., Billings, S.A., Luo, W.: Orthogonal least square methods and their application to non-linear system identification. International Journal of Control 50(5), 1873–1896 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least square learning algorithm for radial basis function networks. IEEE Transactions on Neural Network 2(2), 302–309 (1991)CrossRefGoogle Scholar
  17. 17.
    Wu, J., Kobbelt, L.P.: A stream algorithm for the decimation of massive meshes. In: Graphics Interface 2003 Proceedings, Halifax, Canada, pp. 185–192 (2003)Google Scholar
  18. 18.
    Farfield Technology Ltd., http://www.farfieldtechnology.com/
  19. 19.
    Babuška, I., Melenk, J.M.: The partition of unity method. International Journal of Numerical Methods in Engineering (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiaojun Wu
    • 1
  • Michael Yu Wang
    • 2
  • Qi Xia
    • 2
  1. 1.Harbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  2. 2.The Chinese University of Hong Kong, ShatinHong KongChina

Personalised recommendations