Advertisement

Managing Rapidly-Evolving Scientific Workflows

  • Juliana Freire
  • Cláudio T. Silva
  • Steven P. Callahan
  • Emanuele Santos
  • Carlos E. Scheidegger
  • Huy T. Vo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4145)

Abstract

We give an overview of VisTrails, a system that provides an infrastructure for systematically capturing detailed provenance and streamlining the data exploration process. A key feature that sets VisTrails apart from previous visualization and scientific workflow systems is a novel action-based mechanism that uniformly captures provenance for data products and workflows used to generate these products. This mechanism not only ensures reproducibility of results, but it also simplifies data exploration by allowing scientists to easily navigate through the space of workflows and parameter settings for an exploration task.

Keywords

Data Product Data Exploration Version Tree Exploration Task Data Provenance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alonso, G., Mohan, C.: Workflow management: The next generation of distributed processing tools. In: Jajodia, S., Kerschberg, L. (eds.) Advanced Transaction Models and Architectures, ch. 2. Kluwer, Dordrecht (1997)Google Scholar
  2. 2.
    Anderson, E., Callahan, S., Chen, G., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: Visualization in radiation oncology: Towards replacing the laboratory notebook. Technical Report UUSCI-2006-017, SCI Institute–Univ. of Utah (2006)Google Scholar
  3. 3.
    Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., Vo, H.: VisTrails: Enabling Interactive Multiple-View Visualizations. In: IEEE Visualization 2005, pp. 135–142 (2005)Google Scholar
  4. 4.
    Brodlie, K., Poon, A., Wright, H., Brankin, L., Banecki, G., Gay, A.: GRASPARC: a problem solving environment integrating computation and visualization. In: IEEE Visualization 1993, pp. 102–109 (1993)Google Scholar
  5. 5.
    Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: Using provenance to streamline data exploration through visualization. Technical Report UUSCI-2006-016, SCI Institute–Univ. of Utah (2006)Google Scholar
  6. 6.
    Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing, querying and automating data derivation. In: Statistical and Scientific Database Management (SSDBM), pp. 37–46 (2002)Google Scholar
  7. 7.
    Groth, P., Miles, S., Fang, W., Wong, S.C., Zauner, K.-P., Moreau, L.: Recording and using provenance in a protein compressibility experiment. In: Proceedings of the 14th IEEE International Symposium on High Performance Distributed Computing (HPDC 2005) (July 2005)Google Scholar
  8. 8.
    Kreuseler, M., Nocke, T., Schumann, H.: A history mechanism for visual data mining. In: IEEE Symposium on Information Visualization, pp. 49–56 (2004)Google Scholar
  9. 9.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and Computation: Practice & Experience (2005)Google Scholar
  10. 10.
    Parker, S.G., Johnson, C.R.: SCIRun: a scientific programming environment for computational steering. Supercomputing (1995)Google Scholar
  11. 11.
    Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Record 34(3), 31–36 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juliana Freire
    • 1
  • Cláudio T. Silva
    • 1
  • Steven P. Callahan
    • 1
  • Emanuele Santos
    • 1
  • Carlos E. Scheidegger
    • 1
  • Huy T. Vo
    • 1
  1. 1.University of Utah 

Personalised recommendations