Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization

  • Christian Blum
  • Mateu Yábar Vallès
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4030)


Deoxyribonucleic acid (DNA) sequencing is an important task in computational biology. In recent years the specific problem of DNA sequencing by hybridization has attracted quite a lot of interest in the optimization community. This led to the development of several metaheuristic approaches such as tabu search and evolutionary algorithms. In this work we propose an ant colony algorithm to resolve this problem. In addition, we apply our algorithm within a multi-level framework which helps in significantly reducing the computation time. The results show that our algorithm is currently among the state-of-the-art methods for this problem.


Target Sequence Problem Instance Scatter Search Construction Step Restricted Candidate List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bains, W., Smith, G.C.: A novel method for nucleid acid sequence determination. Journal of Theoretical Biology 135, 303–307 (1988)CrossRefGoogle Scholar
  2. 2.
    Błażewicz, J., Formanowicz, P., Guinand, F., Kasprzak, M.: A heuristic managing errors for DNA sequencing. Bioinformatics 18(5), 652–660 (2002)CrossRefGoogle Scholar
  3. 3.
    Błażewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.: DNA sequencing with positive and negative errors. Journal of Computational Biology 6, 113–123 (1999)CrossRefGoogle Scholar
  4. 4.
    Błażewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.: Tabu search for DNA sequencing with false negatives and false positives. European Journal of Operational Research 125, 257–265 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Błażewicz, J., Glover, F., Kasprzak, M.: DNA sequencing—Tabu and scatter search combined. INFORMS Journal on Computing 16(3), 232–240 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Błażewicz, J., Glover, F., Kasprzak, M.: Evolutionary approaches to DNA sequencing with errors. Annals of Operations Research 138, 67–78 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Błażewicz, J., Kasprzak, M., Kuroczycki, W.: Hybrid genetic algorithm for DNA sequencing with errors. Journal of Heuristics 8, 495–502 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  9. 9.
    Blum, C., Yábar Vallès, M.: New constructive heuristics for DNA sequencing by hybridization. Technical Report LSI-06-23-R, LSI, Universitat Politècnica de Catalunya, Barcelona, Spain (2006)Google Scholar
  10. 10.
    Brizuela, C.A., González, L.C., Romero, H.J.: An improved genetic algorithm for the sequencing by hybridization problem. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 11–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Bui, T.N., Youssef, W.A.: An enhanced genetic algorithm for DNA sequencing by hybridization with positive and negative errors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 908–919. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Boston (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Drmanac, R., Labat, I., Brukner, R., Crkvenjakov, R.: Sequencing of megabase plus DNA by hybridization: Theory of the method. Genomics 4, 114–128 (1989)CrossRefGoogle Scholar
  14. 14.
    Endo, T.A.: Probabilistic nucleotide assembling method for sequencing by hybridization. Bioinformatics 20(14), 2181–2188 (2004)CrossRefGoogle Scholar
  15. 15.
    Fernandes, E.R., Ribeiro, C.C.: Using an adaptive memory strategy to improve a multistart heuristic for sequencing by hybridization. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 4–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Journal of Computational Biology 2(2), 291–306 (1995)CrossRefGoogle Scholar
  17. 17.
    Lysov IuP, Y.P., Florentiev, V.L., Khorlin, A.A., Khrapko, K.R., Shik, V.V.: Determination of the nucleotide sequence of DNA using hybridization with oligonucleotides. a new method. Doklady Akademii nauk SSSR 303, 1508–1511 (1988)Google Scholar
  18. 18.
    Pevzner, P.A.: l-tuple DNA sequencing: Computer analysis. Journal of Biomulecular Structure and Dynamics 7, 63–73 (1989)Google Scholar
  19. 19.
    Walshaw, C.: Multilevel refinement for combinatorial optimization problems. Annals of Operations Research 131 (2004)Google Scholar
  20. 20.
    Walshaw, C., Cross, M.: Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM Journal on Scientific Computing 22(1), 63–80 (2000)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Blum
    • 1
  • Mateu Yábar Vallès
    • 1
  1. 1.ALBCOM, Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations