Packing Problems with Soft Rectangles

  • Toshihide Ibaraki
  • Kouji Nakamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4030)


We consider the problems of packing rectangles, whose shapes are adjustable within given perimeter and area constraints. Using “sequence pairs” to specify relative positions of rectangles, we solve the resulting linear or convex programming problems to determine sizes and locations of all rectangles. To find good sequence pairs, we then resort to local search techniques. This is therefore a hybrid of local search and mathematical programming. The resulting algorithm can solve problem instances with up to 50 rectangles in reasonable amount of time.


Local Search Problem Instance Critical Path Packing Problem Local Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)Google Scholar
  2. 2.
    Chu, C.C.N., Young, E.F.Y.: Nonrectangular shaping and sizing of soft modules for floorplan-design improvement. IEEE Trans. Computer Aided Design of Integrated Circuits and Systems 23, 71–79 (2004)CrossRefGoogle Scholar
  3. 3.
    Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. Springer, Heidelberg (2006)MATHGoogle Scholar
  4. 4.
    Glover, F.W., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Springer, Heidelberg (2003)MATHGoogle Scholar
  5. 5.
    Itoga, H., Kodama, C., Fujiyoshi, K.: A graph based soft module handling in floorplan. IEICE Trans. Fundamentals E88-A, 3390–3397 (2005)CrossRefGoogle Scholar
  6. 6.
    Imahori, S., Yagiura, M., Ibaraki, T.: Local search algorithms for the rectangle packing problem with general spatial costs. Mathematical Programming B97, 543–569 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Imahori, S., Yagiura, M., Ibaraki, T.: Improved local search algorithms for the rectangle packing problem with general spatial costs. European Journal of Operational Research 167-1-16, 48–67 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Konno, H., Kuno, T.: Multiplicative programming problems. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 369–406. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  9. 9.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. European Journal of Operational Research 141, 241–252 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: VLSI module placement based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer Aided Design 15-12, 1518–1524 (1996)CrossRefGoogle Scholar
  11. 11.
    Murata, H., Kuh, E.S.: Seqence-pair based placement method for hard/soft/preplaced modules. In: Proc. Int. Symp. Physical Design, pp. 167–172 (1998)Google Scholar
  12. 12.
    Nakamura, K.: Packing problems with adjustable rectangles under perimeter and/or area constraints, Graduation thesis, Department of Informatics, School of Science and Technology, Kwansei Gakuin University (March 2006)Google Scholar
  13. 13.
    Nakatake, S., Fujiyoshi, K., Murata, H., Kajitani, Y.: Module placement on BSG-structure and IC layout applications. In: Proceedings of International Conference on Computer Aided Design, vol. 15-12, pp. 484–491. SIAM Pub., Philadelphia (1996)CrossRefGoogle Scholar
  14. 14.
    Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Algorithms in Convex Programming. SIAM Pub., Philadelphia (1994)MATHGoogle Scholar
  15. 15.
    Young, F.Y., Chu, C.C.N., Luk, W.L., Wong, Y.C.: Handling soft modules in general nonslicing floorplan using Lagrangean relaxation. IEEE Transactions on Computer-Aided Design of Integrated Circuit and Systetems 20, 687–692 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Toshihide Ibaraki
    • 1
  • Kouji Nakamura
    • 1
  1. 1.Kwansei Gakuin UniversitySandaJapan

Personalised recommendations