A Formal Characterization of Vagueness and Granularity for Context-Aware Mobile and Ubiquitous Computing

  • Hedda R. Schmidtke
  • Woontack Woo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4239)


In this article, a formal approach for modeling central concepts of context-awareness in ubiquitous and mobile computing is introduced. The focus is on an appropriate handling of issues of vagueness and granularity in ubiquitous computing environments. A formalization of perceptual and sensory uncertainty and a characterization of granularity are applied for modeling three central aspects of context-awareness: context as retrieved from sensors, context for representing relevance, and context as unfocussed background information. The notions are developed and demonstrated with respect to the special case of spatial contexts, but are sufficiently general to also cover other types of context. Use of the characterized concepts is motivated with an example of ongoing work on ontology design for ubiquitous computing environments.


Context Location Mobile Computing Ubiquitous Computing Spatial Context Extended Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)MATHCrossRefGoogle Scholar
  2. 2.
    Asher, N., Vieu, L.: Toward a geometry for common sense: A semantics and a complete axiomatization for mereotopology. In: Mellish, C. (ed.) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 846–852. Morgan Kaufmann, San Francisco (1995)Google Scholar
  3. 3.
    Bittner, T., Smith, B.: A theory of granular partitions. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 117–151. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  4. 4.
    Borgo, S., Guarino, N., Masolo, C.: A pointless theory of space based on strong connection and congruence. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR 1996: Principles of Knowledge Representation and Reasoning, pp. 220–229. Morgan Kaufmann, San Francisco (1996)Google Scholar
  5. 5.
    Brézillon, P.: Context in problem solving: A survey. The Knowledge Engineering Review 14(1), 1–34 (1999)CrossRefGoogle Scholar
  6. 6.
    Casati, R., Varzi, A.C.: Parts and places: the structure of spatial representations. MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Chalmers, D., Dulay, N., Sloman, M.: Towards reasoning about context in the presence of uncertainty. In: Proceedings of the Workshop on Advanced Context Modelling, Reasoning And Management at UbiComp, Nottingham, UK (2004)Google Scholar
  8. 8.
    Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College (November 2000), ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.Z
  9. 9.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MATHMathSciNetGoogle Scholar
  10. 10.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: Workshop on The What, Who, Where, When, and How of Context-Awareness, as part of the 2000 Conference on Human Factors in Computing Systems (CHI 2000) (2000)Google Scholar
  11. 11.
    Dugat, V., Gambarotto, P., Larvor, Y.: Qualitative geometry for shape recognition. Applied Intelligence 17, 253–263 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Eschenbach, C.: Viewing composition tables as axiomatic systems. In: FOIS 2001: Proceedings of the international conference on Formal Ontology in Information Systems, pp. 93–104. ACM Press, New York (2001)CrossRefGoogle Scholar
  13. 13.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)Google Scholar
  14. 14.
    Guha, R., McCarthy, J.: Varieties of contexts. In: Blackburn, P., Ghidini, C., Turner, R.M., Giunchiglia, F. (eds.) Modeling and Using Context, pp. 164–177 (2003)Google Scholar
  15. 15.
    Hightower, J., Borriello, G.: A survey and taxonomy of location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)CrossRefGoogle Scholar
  16. 16.
    Hobbs, J.: Granularity. In: Proceedings of IJCAI 1985, pp. 432–435 (1985)Google Scholar
  17. 17.
    Hong, D., Woo, W.: A 3d vision-based ambient user interface. International Journal of Human Computer Interaction 20(3), 271–284 (2006)CrossRefGoogle Scholar
  18. 18.
    Jiang, C., Steenkiste, P.: A hybrid location model with a computable location identifier for ubiquitous computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 246–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Jung, W., Woo, W.: Indoor orientation tracking using ubiTrack. In: Proc. ubiCNS (2005)Google Scholar
  20. 20.
    Kosslyn, S.: Image and Mind. The MIT Press, Cambridge (1980)Google Scholar
  21. 21.
    Leonhardt, U.: Supporting Location Awareness in Open Distributed Systems. PhD thesis, Imperial College, London, UK (1998)Google Scholar
  22. 22.
    Palmer, S.E.: Vision science—photons to phenomenology. MIT Press, Cambridge (1999)Google Scholar
  23. 23.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on region and connection. In: Principles of Knowledge Representation and Reasoning: Proc. 3rd Intl. Conf (KR 1992), pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  24. 24.
    Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. IEEE Network 8(5), 22–32 (1994)CrossRefGoogle Scholar
  25. 25.
    Schilit, B.N., Adams, N.I., Want, R.: Context-aware computing applications. In: Proceedings of the Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE Computer Society, Los Alamitos (1994)CrossRefGoogle Scholar
  26. 26.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Computers and Graphics 23(6), 893–901 (1999)CrossRefGoogle Scholar
  27. 27.
    Schmidtke, H.R.: A geometry for places: Representing extension and extended objects. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 221–238. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Schmidtke, H.R.: Aggregations and constituents: geometric specification of multi-granular objects. Journal of Visual Languages and Computing 16(4), 289–309 (2005)CrossRefGoogle Scholar
  29. 29.
    Schmidtke, H.R.: Granularity as a parameter of context. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS, vol. 3554, pp. 450–463. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced Context Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth International Conference on Ubiquitous Computing (2004)Google Scholar
  31. 31.
    Suppes, P., Zinnes, J.L.: Basic measurement theory. In: Luce, R.D., Bush, R.R., Galanter, E. (eds.) Handbook of Mathematical Psychology, pp. 1–76. John Wiley & Sons, New York (1963)Google Scholar
  32. 32.
    van Deemter, K.: The sorites fallacy and the context-dependence of vague predicates. In: Kanazawa, M., Pinon, C., de Swart, H. (eds.) Quantifiers, Deduction, and Context, pp. 59–86. CSLI Publications, Stanford (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hedda R. Schmidtke
    • 1
  • Woontack Woo
    • 1
  1. 1.GIST U-VR LabGwangjuRepublic of Korea

Personalised recommendations