Comparative Analysis of Kernel Methods for Statistical Shape Learning

  • Yogesh Rathi
  • Samuel Dambreville
  • Allen Tannenbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)


Prior knowledge about shape may be quite important for image segmentation. In particular, a number of different methods have been proposed to compute the statistics on a set of training shapes, which are then used for a given image segmentation task to provide the shape prior. In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding for doing shape analysis. The surfaces are represented as the zero level set of a signed distance function and shape learning is performed on the embeddings of these shapes. We carry out some experiments to see how well each of these methods can represent a shape, given the training set.


Feature Space Kernel Method Locally Linear Embedding Signed Distance Function Kernel Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terzopoulos, D., Szeliski, R.: Tracking with Kalman Snakes. In: Active Vision, pp. 3–20. MIT Press, Cambridge (1992)Google Scholar
  2. 2.
    Ayache, N., Cohen, I., Herlin, I.: Medical image tracking. In: Active Vision, pp. 3–20. MIT Press, Cambridge (1992)Google Scholar
  3. 3.
    Blake, A., Yuille, A. (eds.): Active Vision. MIT Press, Cambridge (1992)Google Scholar
  4. 4.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)MATHGoogle Scholar
  5. 5.
    Dambreville, S., Rathi, Y., Tannenbaum, A.: Shape-based approach to robust image segmentation using kernel pca. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006)Google Scholar
  6. 6.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models, their training and application. In: Computer Vision and Image Understanding, vol. 61, pp. 38–59 (1995)Google Scholar
  7. 7.
    Faugeras, O., Gomes, J.: Dynamic shapes of arbitrary dimension: the vector distance functions. In: Cipolla, R., Martin, R. (eds.) Proceedings of the Ninth IMA Conference on Mathematics of Surfaces. The Mathematics of Surfaces IX. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford-shah based segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. CVPR, pp. 1316–1324. IEEE, Los Alamitos (2000)Google Scholar
  10. 10.
    Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.: A shape-based approach to the sementation of medical imagery using level sets. IEEE Trans. on Medical Imaging 22, 137–153 (2003)CrossRefGoogle Scholar
  11. 11.
    Gomes, J., Faugeras, O.: Shape representation as the intersection of n − k hypersurfaces. Technical Report 4011, INRIA (2000)Google Scholar
  12. 12.
    Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wang, Y., Staib, L.: Boundary finding with correspondence using statistical shape models. In: Proc. CVPR, pp. 338–345 (1998)Google Scholar
  14. 14.
    Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Technical report, Max-Planck-Institute fur biologische Kybernetik (1996)Google Scholar
  15. 15.
    Rathi, Y., Dambreville, S., Tannenbaum, A.: Statistical shape analysis using kernel pca. In: SPIE, Electronic Imaging (2006)Google Scholar
  16. 16.
    Mika, S., Scholkopf, B., Smola, A., Muller, K.R., Scholz, M., Ratsch, G.: Kernel pca and de-noising in feature spaces. Advances in Neural Information Processing Systems 11Google Scholar
  17. 17.
    Kwok, J., Tsang, I.: The pre-image problem in kernel methods. In: 20th Intl. Conference on Machine Learning (2003)Google Scholar
  18. 18.
    Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. In: ACM Transactions on Graphics (SIGGRAPH 2004) (2004)Google Scholar
  19. 19.
    Saul, L.K., Roweis, S.: An introduction to locally linear embedding,
  20. 20.
    Ridder, D., Duin, R.: Locally linear embedding for classification. Technical Report PH-2002-01, Pattern Recognition Group, Delft University of Technology (2002)Google Scholar
  21. 21.
    DeCoste, D.: Visualizing mercer kernel feature spaces via kernelized locally-linear embeddings. In: 8th Intl. Conf. on Neural Information Processing (2001)Google Scholar
  22. 22.
    Chan, T., Zhu, W.: Level set based shape prior segmentation. Technical report, Computational Applied Mathematics, UCLA (2003)Google Scholar
  23. 23.
    Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning and testing. Trans. PAMI (2005)Google Scholar
  24. 24.
    Yezzi, A., Mennucci, A.: Metrics in the space of curves (2004),
  25. 25.
    Michor, P., Mumford, D.: Riemannian geomtries of space of plane curves,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yogesh Rathi
    • 1
  • Samuel Dambreville
    • 1
  • Allen Tannenbaum
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations