3-D Ultrasound Probe Calibration for Computer-Guided Diagnosis and Therapy

  • Michael Baumann
  • Vincent Daanen
  • Antoine Leroy
  • Jocelyne Troccaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)


With the emergence of swept-volume ultrasound (US) probes, precise and almost real-time US volume imaging has become available. This offers many new opportunities for computer guided diagnosis and therapy, 3-D images containing significantly more information than 2-D slices. However, computer guidance often requires knowledge about the exact position of US voxels relative to a tracking reference, which can only be achieved through probe calibration. In this paper we present a 3-D US probe calibration system based on a membrane phantom. The calibration matrix is retrieved by detection of a membrane plane in a dozen of US acquisitions of the phantom. Plane detection is robustly performed with the 2-D Hough transformation. The feature extraction process is fully automated, calibration requires about 20 minutes and the calibration system can be used in a clinical context. The precision of the system was evaluated to a root mean square (RMS) distance error of 1.15mm and to an RMS angular error of 0.61°. The point reconstruction accuracy was evaluated to 0.9mm and the angular reconstruction accuracy to 1.79°.


Root Mean Square Error Feature Extraction Root Mean Square Distance Error Angular Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rohling, R., Gee, A., Berman, L.: A comparison of freehand three-dimensional ultrasound reconstruction techniques. Medical Image Analysis 3(4), 339–359 (1999)CrossRefGoogle Scholar
  2. 2.
    Mercier, L., Langø, T., Lindseth, F., Collins, D.L.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(2), 143–165 (2004)CrossRefGoogle Scholar
  3. 3.
    State, A., Chen, D.T., Tektor, C., Brandt, A., Chen, H., Ohbuchi, R., Bajura, M., Fuchs, H.: Case study: Observing a volume rendered fetus within a pregnant patient. IEEE Visualization Proc., 364–368 (1994)Google Scholar
  4. 4.
    Prager, R.W., Rohling, R.N., Gee, A.H., Berman, L.: Rapid calibration for 3-D freehand ultrasound. Ultrasound Med. Biol. 24(6), 855–869 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Muratore, D.M., Galloway, R.J.: Beam calibration without a phantom for creating a 3-D freehand ultrasound system. Ultrasound Med. Biol. 27(11), 1557–1566 (2001)CrossRefGoogle Scholar
  6. 6.
    Leotta, D.F.: An efficient calibration method for freehand 3-D ultrasound imaging systems. Ultrasound Med. Biol. 30, 999–1008 (2004)CrossRefGoogle Scholar
  7. 7.
    Comeau, R.M., Fenster, A., Peters, T.M.: Integrated mr and ultrasound imaging for improved image guidance in neurosurgery. In: SPIE Proc., vol. 3338, pp. 747–754 (1998)Google Scholar
  8. 8.
    Pagoulatos, N., Haynor, D.N., Kim, Y.: A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer. Ultrasound Med. Biol. 27, 1219–1229 (2001)CrossRefGoogle Scholar
  9. 9.
    Linseth, F., Tangen, G.A., Langø, T.: Probe calibration for freehand 3-Dultrasound. Ultrasound Med. Biol. 29, 49–69 (2003)Google Scholar
  10. 10.
    Lango,T.: Ultrasound guided surgery: Image processing and navigation. Ph.D. thesis. Norvegian University of Science and Technology, Trondheim (2000)Google Scholar
  11. 11.
    Treece, G.M., Gee, A.H., Prager, R.W., Cash, C.J.C., Bermah, L.H.: High-definition freehand 3-D ultrasound. Ultrasound Med. Biol. 29(4), 529–546 (2003)CrossRefGoogle Scholar
  12. 12.
    Blackall, J.M., Rueckert, D., Maurer Jr., C.R., Penney, G.P., Hill, D.L.G., Hawkes, D.J.: An image registration approach to automated calibration for freehand 3D ultrasound. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 462–471. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Poon, T.C., Rohling, R.N.: Comparison of calibration methods for spatial tracking of a 3-D ultrasound probe. Ultrasound Med. Biol. 31(8), 1095–1108 (2005)CrossRefGoogle Scholar
  14. 14.
    Bouchet, L.G., Meeks, S.L., Goodchield, G., Bova, F.J., Buatti, J.M., Friedmann, W.A.: Calibration of three-dimensional ultrasound images for image-guided radiation therapy. Physics Med. Biol. 46, 559–577 (2001)CrossRefGoogle Scholar
  15. 15.
    Lange, T., Eulenstein, S.: Calibration of swept-volume 3-D ultrasound. In: MIUA Proc., vol. 99(3), pp. 29–32 (2002)Google Scholar
  16. 16.
    Bilaniuk, N., Wong, G.S.K.: Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 93(3), 1609–1612 (1993)CrossRefGoogle Scholar
  17. 17.
    Bilaniuk, N., Wong, G.S.K.: Erratum: Speed of sound in pure water as a function of temperature [j. acoust. soc. am. 93, 1609-1612 (1993)]. J. Acoust. Soc. Am 99(5), 3257 (1996)CrossRefGoogle Scholar
  18. 18.
    Goldstein, A.: The effect of acoustic velocity on phantom measurements. Ultrasound Med Biol 26(7), 1133–1143 (2000)CrossRefGoogle Scholar
  19. 19.
    Press, W.H., Flannery, B.P., Teukolsky, S., Vetterling, W.T.: Numerical Recipies in C, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  20. 20.
    Hook, I.: Probe calibration for 3-D ultrasound image localization. Internship report. TIMC laboratory, GMCAO (2003)Google Scholar
  21. 21.
    Hsu, P.W., Prager, R.W., Gee, A.H., Treece, G.M.: Rapid, easy and reliable calibration for freehand 3-D ultrasound. In: MIUA Proc., pp. 91–94 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Baumann
    • 1
    • 2
  • Vincent Daanen
    • 1
  • Antoine Leroy
    • 2
  • Jocelyne Troccaz
    • 1
  1. 1.TIMC Laboratory, GMCAO Department, Institut d’Ingénierie de l’Information de Santé (IN3S), Faculty of MedecineLa TroncheFrance
  2. 2.KOELISLa TroncheFrance

Personalised recommendations