Advertisement

A Study on the Influence of Image Dynamics and Noise on the JPEG 2000 Compression Performance for Medical Images

  • Peter Michael Goebel
  • Ahmed Nabil Belbachir
  • Michael Truppe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)

Abstract

This paper addresses two questions concerning JPEG2000 compression – firstly – how much has noise influence on compression performance – secondly – can compression performance be improved by applying a new complementary conception with introducing a denoising process before the application of compression Indeed, radiographic images are a combination between the relevant signal and noise, which is per definition not compressible. The noise behaves generally close to a mixture of Gaussian and/or Poisson statistics, which generally affects the compression performance. In this paper, the influence of noise on the compression performance of JPEG2000 images with investigating the parameters signal dynamic and spatial pattern frequency are considered; and the JPEG2000 compression scheme combined with a denoising process is analyzed on simulated and real dental ortho-pan-tomographic images. The test images are generated using Poisson statistics; the denoising utilizes a Monte Carlo noise modeling method. A hundred selected images are denoised and the compression ratio, using lossless and lossy JPEG 2000, is reported and evaluated.

Keywords

Peak Signal Noise Ratio Image Compression Blind Source Separation JPEG2000 Compression Compression Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Shaykh, K.O., Mersereau, R.M.: Lossy compression of noisy images. IEEE Trans. on Image Proc. 7(12) (1998)Google Scholar
  2. 2.
    Belbachir, A.N., Goebel, P.M.: Color image compression: Early vision and the multiresolution representations. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 25–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Belbachir, A.N., Goebel, P.M.: The contourlet transform for image compression. In: PSIP 2005 Physics in Signal and Image Proc. (January 2005)Google Scholar
  4. 4.
    Cardoso, J.F.: Blind signal separation: statistical principles. Proceedings of the IEEE 9(10), 2009–2025 (1998)CrossRefGoogle Scholar
  5. 5.
    Chen, T.J., Chuang, K.S., Wu, J., Chen, S.C., Hwang, I.M., Jan, M.L.: A novel image quality index using moran i statistics. Physics in Medicine and Biology 48, 131–137 (2003)CrossRefGoogle Scholar
  6. 6.
    Clunie, D.A.: Lossless compression of grayscale medical images - effectiveness of traditional and state of the art approaches. SPIE Med. Imaging (February 2000)Google Scholar
  7. 7.
    Degroot, J.M., Hall, E.L., Sutton, R.N., Lodwick, G.S., Dwyer, S.J.: Perception of computer simulated pulmonary lesions in chest radiographs. In: Proceedings of the ACM Annual Conference, August 1972, pp. 146–151 (1972)Google Scholar
  8. 8.
    Goebel, P.M., Belbachir, A.N., Truppe, M.: Background removal in dental panoramic x-ray images by the a-trous multiresolution transform. In: IEEE Europ. Conf. on Circuit Theory and Design, ECCTD 2005 (August 2005)Google Scholar
  9. 9.
    Goebel, P.M., Belbachir, A.N., Truppe, M.: Noise estimation in panoramic x-ray images: An appl. analysis approach. In: IEEE Workshop on Stat. Signal Proc., SSP 2005 (July 2005)Google Scholar
  10. 10.
    Kai, X., Jie, Y., Min, Z.Y., Liang, L.X.: HVS-based medical image compression. Europ. Journal of Radiology 55(1), 139–145 (2005)CrossRefGoogle Scholar
  11. 11.
    Nadenau, M.J., Reichel, J., Kunt, M.: Wavelet-based color image compression: Exploiting the contrast sensivity function. IEEE Trans. on Image Proc. 12(1) (January 2003)Google Scholar
  12. 12.
    Nakagami, M.: The m-distribution, a general formula of intensity of rapid fading. In: Hoffman, W.G. (ed.) Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held at the University of California, pp. 3–36. Pergamon Press, Oxford (1960)Google Scholar
  13. 13.
    Rabbani, M., Jones, P.W.: Digital image compression techniques. SPIE Press, Bellingham (1991)CrossRefGoogle Scholar
  14. 14.
    Sayood, K.: Introduction to Data Compression. Morgan Kaufmann, San Francisco (2000)Google Scholar
  15. 15.
    Siddiqui, K.M., Johnson, J.P., Reiner, B.I., Siegel, E.L.: Discrete cosine transform jpeg compression vs. 2d jpeg2000 compression. In: Proc. of SPIE Medical Imaging (February 2005)Google Scholar
  16. 16.
    Simpson, W.A., Falkenberg, H.K., Manahilov, V.: Sampling efficiency and internal noise for motion detection, discrimination, and summation. Vision Research 43, 2125–2132 (2003)CrossRefGoogle Scholar
  17. 17.
    Slone, R.M., Foos, D.H., Whiting, B.R., et al.: Assessment of visually lossless irreversible image compression: Comparison of three methods by using an image-comparison workstation. Radiology 215, 543–553 (2000)Google Scholar
  18. 18.
    Taubman, D., Ordentlich, E., Weinberger, M., Seroussi, G.: Embedded block coding in JPEG 2000. Signal Proc. Image Comm. 17(1), 49–72 (2002)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Simoncelli, E.P.: An adaptive linear system framework for image distortion analysis. In: IEEE Int. Conf. on Image Proc. (September 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Michael Goebel
    • 1
  • Ahmed Nabil Belbachir
    • 2
  • Michael Truppe
    • 1
  1. 1.Karl-Landsteiner Institute for BiotelematicsViennaAustria
  2. 2.ARC, Seibersdorf Research GmbHViennaAustria

Personalised recommendations