Spatial Intensity Correction of Fluorescent Confocal Laser Scanning Microscope Images

  • Sang-Chul Lee
  • Peter Bajcsy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4241)


Fluorescent confocal laser scanning microscope (CLSM) imaging has become popular in medical domain for the purpose of 3D information extraction. 3D information is extracted either by visual inspection or by automated techniques. Nonetheless, 3D information extraction from CLSM suffers from significant lateral intensity heterogeneity. We propose a novel lateral intensity heterogeneity correction technique to improve accurate image analysis, e.g., quantitative analysis, segmentation, or visualization. The proposed technique is novel in terms of its design (spatially adaptive mean-weight filtering) and application (CLSM), as well as its properties and full automation. The key properties of the intensity correction techniques include adjustment of intensity heterogeneity, preservation of fine structural details, and enhancement of image contrast. The full automation is achieved by data-driven parameter optimization and introduction of several evaluation metrics. We evaluated the performance by comparing with three other techniques, four quality metrics, and two realistic synthetic images and one real CLSM image.


Histogram Equalization Intensity Correction Kernel Size Speckle Noise Confocal Laser Scan Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, X., Ai, Z., Rasmussen, M., Bajcsy, P., Auvil, L., Welge, M., Leach, L., Folberg, R.: Three-dimensional reconstruction of extravascular matrix patterns and blood vessels in human uveal melanoma tissue: Preliminary findings. Invest. Ophthal. & Vis. Sci. 44, 2834–2840 (2003)CrossRefGoogle Scholar
  2. 2.
    Benson, D., Bryan, J., Plant, A., Gotto, A., Smith, L.: Digital Imaging fluorescence microscopy: Spatial heterogeneity of photobleaching rate constants in individual cells. J. Cell Biol. 100, 1309–1323 (1985)CrossRefGoogle Scholar
  3. 3.
    Jungke, M., von Seelen, W., Bielke, G., Meindl, S., et al.: A system for the diagnostic use of tissue characterizing parameters in NMR-tomography. In: Proc. of Info. Proc. in Med. Imaging, IPMI 1987, vol. 39, pp. 471–481 (1987)Google Scholar
  4. 4.
    Rigaut, J., Vassy, J.: High-resolution 3D images from confocal scanning laser microscopy: quantitative study and mathematical correction of the effects from bleaching and fluorescence attenuation in depth. Anal. Quant. Cytol. 13, 223–232 (1991)Google Scholar
  5. 5.
    Oostveldt, P.V., Verhaegen, F., Messen, K.: Heterogenous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode. Cytometry 32, 137–146 (1998)CrossRefGoogle Scholar
  6. 6.
    Tauer, U., Hils, O.: Confocal Spectrophotometry. Sci. and Tech. Info., Sp. issue: Confocal Microscopy, CDR 4, 15–27 (2000)Google Scholar
  7. 7.
    Rodenacker, K., Aubele, P., Hutzler, M., Adiga, P.: Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma. Anal. Cell. Pathol. 15, 19–29 (1997)Google Scholar
  8. 8.
    Irinopoulo, T., Vassy, J., Beil, M., Nicolopoulo, P., Encaoua, D., Rigaut, J.: 3-D DNA image cytometry by confocal scanning lasermicroscopy in thick tissue blocks of prostatic lesions. Cytometry 27, 99–105 (1997)CrossRefGoogle Scholar
  9. 9.
    Roerdink, J., Bakker, M.: An FFT-based method for attenuation correction in fluorescence confocal microscopy. J. Microsc. 169, 3–14 (1993)Google Scholar
  10. 10.
    Liljeborg, A., Czader, M., Porwit, A.: A method to compensate for light attenuation with depth in 3D DNA image cytometry using a confocal scanning laser microscope. J. Microsc. 177, 108–114 (1995)Google Scholar
  11. 11.
    Kervrann, C., Legland, D., Pardini, L.: Robust incremental compensation of the light attenuation with depth in 3D fluorescence microscopy. J. Microsc. 214, 297–314 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Oostveldt, P., Verhaegen, F., Messens, K.: Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode. Cytometry 32, 137–146 (1998)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, R., Woods, E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  14. 14.
    Pizer, S.M., Zimmerman, J.B., Stabb, E.: Adaptive grey level assignment in CT scan display. J. Comp. Assist. Tomography 8, 300–305 (1984)Google Scholar
  15. 15.
    Pisano, E., Zong, S., Hemminger, M., De Luca, M., Johnsoton, R., Muller, K., Braeuning, M., Pizer, S.: Contrast Limited Adaptive Histogram Equalization Image Processing to Improve the Detection of Simulated Spiculations in Dense Mammograms. J. Digital Imaging 11(4), 193–200 (1998)CrossRefGoogle Scholar
  16. 16.
    Styner, M., Brechbuhler, C., Szekely, G., Gerig, G.: Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imaging 19(3), 153–165 (2000)CrossRefGoogle Scholar
  17. 17.
    Sanchez-Brea, L.M., Bernabeu, E.: On the standard deviation in CCD cameras: a variogram-based technique for non-uniform images. J. Electronic Imaging 11(2), 121–126 (2002)CrossRefGoogle Scholar
  18. 18.
    Hu, J., Razdan, A., Nielson, G., Farin, G., Baluch, D., Capco, D.: Volumetric Segmentation Using Weibull E-SD Fields. IEEE Trans. on Vis. and Comp. Graphics 9(3) (2003)Google Scholar
  19. 19.
    Weisstein, E.: Least Squares Fitting–Exponential from MathWorld–A Wolfram Web Resource,
  20. 20.
    Mangin, J.: Entropy minimization for automatic correction of intensity nonuniformity Math. Method in Biomed. Image Analysis (MMBIA), 162–169 (2000)Google Scholar
  21. 21.
    Bajcsy, P., Groves, P.: Methodology for Hyperspectral Band Selection. Photo. Eng. and Remote Sensing J. 70, 793–802 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sang-Chul Lee
    • 1
  • Peter Bajcsy
    • 1
  1. 1.National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations