Advertisement

Blinded Fault Resistant Exponentiation

  • Guillaume Fumaroli
  • David Vigilant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4236)

Abstract

As the core operation of many public key cryptosystems, group exponentiation is central to cryptography. Attacks on its implementation in embedded device setting is hence of great concern. Recently, implementations resisting both simple side-channel analysis and fault attacks were proposed. In this paper, we go further and present an algorithm that also inherently thwarts differential side-channel attacks in finite abelian groups with only limited time and storage overhead.

Keywords

Abelian Group Elliptic Curve Secret Data Fault Attack Cryptographic Hardware 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Boneh, D., Lipton, R.J., DeMillo, R.A.: On the Importance of Checking Cryptographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Coron, J.S.: Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Goubin, L.: A refined power analysis attack on elliptic curve cryptosystems. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–211. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dupuy, W., Kunz-Jacques, S.: Resistance of Randomized Projective Coordinates Against Power Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Joye, M., Yen, S.M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Trichina, E., Bellezza, A.: Implementation of elliptic curve cryptography with built-in counter measures against side channel attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 98–113. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24, 106–110 (1978)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Giraud, C.: Fault Resistant RSA Implementation. In: Breveglieri, L., Koren, I. (eds.) 2nd Workshop on Fault Diagnosis and Tolerance in Cryptography — FDTC 2005, pp. 142–151 (2005)Google Scholar
  12. 12.
    Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering Based RSA. In: Breveglieri, L., Koren, I. (eds.) 2nd Workshop on Fault Diagnosis and Tolerance in Cryptography — FDTC 2005, pp. 124–131 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guillaume Fumaroli
    • 1
  • David Vigilant
    • 2
  1. 1.Thales CommunicationsColombesFrance
  2. 2.GemaltoMeudonFrance

Personalised recommendations