Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection

  • Konrad J. Kulikowski
  • Mark G. Karpovsky
  • Alexander Taubin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4236)


Traditional hardware error detection methods based on linear codes make assumptions about the typical or expected errors and faults and concentrate the detection power towards the expected errors and faults. These traditional methods are not optimal for the protection of hardware implementations of cryptographic hardware against fault attacks. An adversary performing a fault-based attack can be unpredictable and exploit weaknesses in the traditional implementations. To detect these attacks where no assumptions about expected error or fault distributions should be made we propose and motivate an architecture based on robust nonlinear systematic (n,k)-error-detecting codes. These code can provide uniform error detecting coverage independently of the error distributions. They make no assumptions about what faults or errors will be injected by an attacker and have fewer undetectable errors than linear codes with the same (n,k). We also present optimization approaches which provide for a tradeoff between the levels of robustness and required overhead for hardware implementations.


Smart Card Linear Code Advance Encryption Standard Protection Method Code Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    FIPS PUB 197: Advanced Encryption Standard, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  3. 3.
    Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s Apprentice Guide to Fault Attacks. Cryptology ePrint Archive, Report 2004/100, Available: http://eprint.iacr.org/2004/100.pdf
  4. 4.
    Karpovsky, M.G., Taubin, A.: A New Class of Nonlinear Systematic Error Detecting Codes. IEEE Trans. Info. Theory 50(8), 1818–1820 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, C.N., Yen, S.M.: Differential Fault Analysis on AES Key Schedule and Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 118–129. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on AES. Cryptology ePrint Archive, Report 2003/010, Available: http://eprint.iacr.org/2003/010.pdf
  7. 7.
    Giraud, C.: DFA on AES. Cryptology ePrint Archive, Report 2003/008, Available: http://eprint.iacr.org
  8. 8.
    Blömer, J., Seifert, J.P.: Fault Based Cryptanalysis of the Advanced Encryption Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Quisquater, J.J., Piret, G.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent Error Detection of Fault Based Side-Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 21(12), 1509–1517 (2002)CrossRefGoogle Scholar
  11. 11.
    Karri, R., Kuznetsov, G., Gössel, M.: Parity-Based Concurrent Error Detection of Substitution-Permutation Network Block Ciphers. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 113–124. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error Analysis and Detection Procedures for a Hardware Implementation of the Advanced Encryption Standard. IEEE Transactions on Computers 52(4) (2003)Google Scholar
  13. 13.
    Karpovsky, M.G., Kulikowski, K., Taubin, A.: Robust Protection against Fault-Injection Attacks of Smart Cards Implementing the Advanced Encryption Standard. In: Proc. Int. Conference on Dependable Systems and Networks (DNS 2004) (July 2004)Google Scholar
  14. 14.
    Karpovsky, M.G., Kulikowski, K., Taubin, A.: Differential Fault Analysis Attack Resistant Architectures for the Advanced Encryption Standard. In: Proc. World Computing Congress, Cardis (August 2004)Google Scholar
  15. 15.
    Karpovsky, M.G., Nagvajara, P.: Optimal Robust Compression of Test Responses. IEEE Trans. on Computers 39(1), 138–141 (1990)CrossRefGoogle Scholar
  16. 16.
    Karpovsky, M.G., Nagvajara, P.: Optimal Codes for the Minimax Criterion on Error Detection. IEEE Trans. on Information Theory (November 1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Konrad J. Kulikowski
    • 1
  • Mark G. Karpovsky
    • 1
  • Alexander Taubin
    • 1
  1. 1.Reliable Computing LaboratoryBoston UniversityBostonUSA

Personalised recommendations