Realization of Intensity Modulated Radiation Fields Using Multileaf Collimators

  • T. Kalinowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


In the treatment of cancer using high energetic radiation the problem arises how to irradiate the tumor without damaging the healthy tissue in the immediate vicinity. In order to do this as efficiently as possible intensity modulated radiation therapy (IMRT) is used. A modern way to modulate the homogeneous radiation field delivered by an external accelerator is to use a multileaf collimator in the static or in the dynamic mode. In this paper several aspects of the construction of optimal treatment plans are discussed and some algorithms for this task are described.


Intensity Modulate Radiation Knapsack Problem Hamiltonian Path Monitor Unit Leaf Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baatar, D., Hamacher, H.W.: New LP model for multileaf collimators in radiation therapy, contribution to the conference ORP3, University of Kaiserslautern (2003)Google Scholar
  2. 2.
    Boland, N., Hamacher, H.W., Lenzen, F.: Minimizing beam-on time in cancer radiation treatment using multileaf collimators. Networks 43, 226 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bortfeld, T.R., Kahler, D.L., Waldron, T.J., Boyer, A.L.: X–ray field compensation with multileaf collimators. Int. J. Radiat. Oncol. Biol. Phys. 28, 723–730 (1994)CrossRefGoogle Scholar
  4. 4.
    Boyer, A.L., Yu, C.Y.: Intensity–modulated radiation therapy with dynamic multileaf collimators. Semin. Radiat. Oncol. 9, 48–59 (1999)CrossRefGoogle Scholar
  5. 5.
    Convery, D.J., Rosenbloom, M.E.: The generation of intensity–modulated fields for conformal radiotherapy by dynamic collimation. Phys. Med. Biol. 37(6), 1359–1374 (1992)CrossRefGoogle Scholar
  6. 6.
    Dai, J., Zhu, Y.: Minimizing the number of segments in a delivery sequence for intensity–modulated radiation therapy with a multileaf collimator. Med. Phys. 28, 2113–2120 (2001)CrossRefGoogle Scholar
  7. 7.
    Engel, K.: A new algorithm for optimal multileaf collimator field segmentation, Preprint 03/5, Fachbereich Mathematik, Uni Rostock (2003)Google Scholar
  8. 8.
    Galvin, J.M., Chen, X.G., Smith, R.M.: Combining multileaf fields to modulate fluence distributions. Int. J. Radiat. Oncol. Biol. Phys. 27, 697–705 (1993)CrossRefGoogle Scholar
  9. 9.
    Haufschild, M., Korn, U.M.: Mit Mathematik gegen Krebs – Optimale Einstellung eines Gerätes in der Strahlentherapie, contribution to Jugend–forscht (2003)Google Scholar
  10. 10.
    Jungnickel, D.: Graphen, Netzwerke und Algorithmen, BI–Wissenschaftsverlag, Mannheim (1994)Google Scholar
  11. 11.
    Kalinowski, T.: An algorithm for optimal multileaf collimator field segmentation with interleaf collision constraint, Preprint 03/2, Fachbereich Mathematik, Uni Rostock (2003)Google Scholar
  12. 12.
    Kalinowski, T.: An algorithm for optimal multileaf collimator field segmentation with interleaf collision constraint 2, Preprint 03/8, Fachbereich Mathematik, Uni Rostock (2003)Google Scholar
  13. 13.
    Kamath, S., Sahni, S., Li, J., Palta, J., Ranka, S.: Leaf sequencing algorithms for segmented multileaf collimation. Phys. Med. Biol. 48, 307–324 (2003)CrossRefGoogle Scholar
  14. 14.
    Langer, M., Thai, V., Papiez, L.: Improved leaf sequencing reduces segments of monitor units needed to deliver IMRT using multileaf collimators. Med. Phys. 28, 2450–2458 (2001)CrossRefGoogle Scholar
  15. 15.
    Lenzen, F.: An integer programming approach to the multileaf collimator problem, Master’s thesis, University of Kaiserslautern, Dept. of Mathematics (2000)Google Scholar
  16. 16.
    Ma, L., Boyer, A.L., Xing, L., Ma, C.M.: An optimized leaf setting algorithm for beam intensity modulation using dynamic multileaf collimators. Phys. Med. Biol. 43, 1629–1643 (1998)CrossRefGoogle Scholar
  17. 17.
    Que, W.: Comparison of algorithms for multileaf collimator field segmentation. Med. Phys. 26, 2390–2396 (1999)CrossRefGoogle Scholar
  18. 18.
    Siochi, R.A.C.: Minimizing static intensity modulation delivery time using an intensity solid paradigm. Int. J. Radiat. Oncol. Biol. Phys. 43, 671–680 (1999)CrossRefGoogle Scholar
  19. 19.
    Spirou, S.V., Chui, C.S.: Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med. Phys. 21, 1031–1041 (1994)CrossRefGoogle Scholar
  20. 20.
    Stein, J., Bortfeld, T., Dörschel, B., Schlegel, W.: Dynamic X–ray compensation for conformal radiotherapy by means of multi–leaf collimation. Radiother. Oncol. 32, 163–173 (1994)CrossRefGoogle Scholar
  21. 21.
    Svensson, R., Källman, P., Brahme, A.: An analytical solution for the dynamic control of multileaf collimators. Phys. Med. Biol. 39, 37–61 (1994)CrossRefGoogle Scholar
  22. 22.
    van Santvoort, J.P.C., Heijmen, B.J.M.: Dynamic multileaf collimation without ’tongue-and-groove’ underdosage effects. Phys. Med. Biol. 41, 2091–2105 (1996)CrossRefGoogle Scholar
  23. 23.
    Webb, S., Bortfeld, T., Stein, J., Convery, D.: The effect of stair–step leaf transmission on the tongue–and–groove problem in dynamic radiotherapy with a multileaf collimator. Phys. Med. Biol. 42, 595–602 (1996)CrossRefGoogle Scholar
  24. 24.
    Xia, P., Verhey, L.: Multileaf collimator leaf–sequencing algorithm for intensity modulated beams with multiple static segments. Med. Phys. 25, 1424–1434 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. Kalinowski

There are no affiliations available

Personalised recommendations