On Attractive and Friendly Sets in Sequence Spaces

  • R. Ahlswede
  • L. Khachatrian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


To a large extent the present work is far from being conclusive, instead, new directions of research in combinatorial extremal theory are started. Also questions concerning generalizations are immediately noticeable.

The incentive came from problems in several fields such as Algebra, Geometry, Probability, Information and Complexity Theory. Like several basic combinatorial problems they may play a role in other fields. For scenarios of interplay we refer also to [9].


Sequence Space Uniqueness Theorem Dual Form Conditional Entropy Optimal Versus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harper, L.H.: Optimal assignment of numbers to vertices. J. Soc. Industr. Appl. Math. 12(1), 385–393 (1964)MathSciNetGoogle Scholar
  2. 2.
    Lindsey, H.H.: Assignment of numbers to vertices. Amer. Math. Monthly 71, 508–516 (1964)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernstein, A.J.: Maximal connected arrays on the n–cube. SIAM J. Appl. Math. 15(6), 1485–1489 (1967)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Harper, L.H.: Optimal numberings and isoperimetric problems on graphs. J. Combin. Theory 1, 385–393 (1966)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ahlswede, R., Zhang, Z.: An identity in combinatorial extremal theory. Adv. in Math. 80(2), 137–151 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ahlswede, R., Zhang, Z.: On multi–user write–efficient memories. IEEE Trans. Inform. Theory 40(3), 674–686 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Ahlswede, R., Cai, N.: Models of multi–user write–efficient memories and general diametric theorems, Preprint 93–019, SFB 343 Diskrete Strukturen in der Mathematik, Universität Bielefeld, Information and Computation, Vol. 135(1), pp. 37–67 (1997)Google Scholar
  8. 8.
    Ahlswede, R., Katona, G.: Contributions to the geometry of Hamming spaces. Discrete Mathematics 17, 1–22 (1977)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ahlswede, R.: Advances on extremal problems in number theory and combinatorics. In: European Congress of Mathematics, Barcelona 2000, vol. I, 147–175, Casacuberta, C., Miró–Roig, R.M., Verdera, J. , Xambó–Descamps, S. (eds.), Progress in Mathematics, vol. 201, Birkhäuser Verlag, Basel–Boston–Berlin (2001)Google Scholar
  10. 10.
    Lawrence, J.: Lopsided sets and orthant–intersection of convex sets. Pacific J. Math. 104, 155–173 (1983)MATHMathSciNetGoogle Scholar
  11. 11.
    Bandelt, H.J., Chepoi, V., Dress, A., Koolen, J.: Theory of lopsided set systems (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • L. Khachatrian
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2. 

Personalised recommendations