Appendix: On Set Coverings in Cartesian Product Spaces

  • R. Ahlswede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


Consider \((X,{\mathcal E})\), where X is a finite set and \({\mathcal E}\) is a system of subsets whose union equals X. For every natural number n ∈ℕ define the cartesian products X n =∏1 n X and \({\mathcal E}_n=\prod_1^n{\mathcal E}\). The following problem is investigated: how many sets of \({\mathcal E}_n\) are needed to cover X n ? Let this number be denoted by c(n). It is proved that for all n ∈ℕ

\(\exp\{C\cdot n\}\leq c(n)\leq\exp\{Cn+\log n+\log\log|X|\}+1.\)

A formula for C is given. The result generalizes to the case where X and \({\mathcal E}\) are not necessarily finite and also to the case of non–identical factors in the product. As applications one obtains estimates on the minimal size of an externally stable set in cartesian product graphs and also estimates on the minimal number of cliques needed to cover such graphs.


Identical Factor Packing Problem Maximal Clique Product Graph Noisy Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shannon, C.E.: The zero–error capacity of a noisy channel. IRE Trans. Inform. Theory IT–2, 8–19 (1956)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Shannon, C.E.: Certain results in Coding Theory for noisy channels. Inform. and Control 1, 6–25 (1957)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berge, C.: Graphes et Hypergraphes, Monographies universitaires de mathématiques, Dunod Paris (1970)Google Scholar
  4. 4.
    von Neumaun, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)Google Scholar
  5. 5.
    Ahlswede, R.: Channel capacities for list codes. J. Appl. Probability 10, 824–836 (1973)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Markosian, A.G.: The number of internal stability in a cartesian product graph and it’s application to information theory (in Russian). In: The Second International Symposium on Information Theory, Tsahkadsor, Armenian SSR, September, pp. 2–8 (1971)Google Scholar
  7. 7.
    Kolmogoroff, A.N., Tichomirow, W.M.: ε–Entropie and ε–Kapazität von Mengen in Funktionalr”aumen (Translation from the Russian), Arbeiten zur Informationstheorie III, Mathematische Forschungsberichte, VEB Deutscher Verlag der Wissenschaften, Berlin (1960)Google Scholar
  8. 8.
    Rogers, C.A.: Packing and Covering. Cambridge Tracts in Mathematics and Mathematical Physics. University Press, Cambridge (1964)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  1. 1.Universität BielefeldFakultät für MathematikBielefeldGermany

Personalised recommendations