Advertisement

Identification for Sources

  • R. Ahlswede
  • B. Balkenhol
  • C. Kleinewächter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)

Abstract

The classical transmission problem deals with the question how many possible messages can we transmit over a noisy channel? Transmission means there is an answer to the question “What is the actual message?” In the identification problem we deal with the question how many possible messages the receiver of a noisy channel can identify? Identification means there is an answer to the question “Is the actual message u?” Here u can be any member of the set of possible messages.

Keywords

Information Transfer Noisy Channel Actual Message Discrete Apply Mathematic Source Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423, 623–656 (1948)Google Scholar
  2. 2.
    Huffman, D.A.: A method for the construction of minimum redundancy codes. In: Proc. IRE, vol. 40, pp. 1098–1101 (1952)Google Scholar
  3. 3.
    Ahlswede, R., Dueck, G.: Identification via channels. IEEE Trans. Inf. Theory 35(1), 15–29 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ahlswede, R.: General theory of information transfer, Preprint 97–118, SFB 343, Diskrete Strukturen in der Mathematik, Universität Bielefeld (1997); General theory of information transfer:updated, General Theory of Information Transfer and Combinatorics, a Special Issue of Discrete Applied Mathematics (to appear)Google Scholar
  5. 5.
    Ahlswede, R., Csiszár, I.: Common randomness in Information Theory and Cryptography, Part II: CR capacity. IEEE Trans. Inf. Theory 44(1), 55–62 (1998)CrossRefGoogle Scholar
  6. 6.
    Campbell, C.C.: Definition of entropy by means of a coding problem. Z. Wahrscheinlichkeitstheorie u. verw. Geb., 113–119 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • B. Balkenhol
    • 2
  • C. Kleinewächter
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2. 

Personalised recommendations