Advertisement

Percolation on a k-Ary Tree

  • K. Kobayashi
  • H. Morita
  • M. Hoshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)

Abstract

Starting from the root, extend k branches and append k children with probability p, or terminate with probability q=1–p. Then, we have a finite k-ary tree with probability one if 0 ≤p ≤1/k. Moreover, we give the expectation and variance of the length of ideal codewords for representing the finite trees. Furthermore, we establish the probability of obtaining infinite tree, that is, of penetrating to infinity without termination for case 1/kp ≤1.

Keywords

Binary Tree Internal Node IEEE International Symposium Percolation Model Catalan Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn., vol. 1. Wiley, Chichester (1957)MATHGoogle Scholar
  2. 2.
    Raney, G.N.: Functional composition patterns and power series reversion. Trans. AMS 94, 441–451 (1960)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms. Addison-Wesley, Reading (1968)MATHGoogle Scholar
  4. 4.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  5. 5.
    Willems, F., Shtarkov, Y., Tjalkens, T.: The context-tree weighting method: basic properties. IEEE Trans. Inform. Theory 41(3), 653–664 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithm. Addison-Wesley, Reading (1996)Google Scholar
  7. 7.
    Kobayashi, K., Han, T.S.: On the pre-order coding for complete k-ary coding trees. In: Proceedings of 1996 International Symposium on Information Theory and Its Applications, pp. 302–303 (1996)Google Scholar
  8. 8.
    Kobayashi, K., Morita, H., Hoshi, M.: Enumerative coding for k-ary trees. In: Proceedings of the 1997 IEEE International Symposium on Information Theory, p. 423 (1997)Google Scholar
  9. 9.
    Kobayashi, K., Morita, H., Hoshi, M.: Information theoretic aspects on coding of trees. In: Proceedings of Memorial Workshop for the 50th Anniversary of the Shannon Theory, held at Yamanashi, pp. 43–45 (1999)Google Scholar
  10. 10.
    Kobayashi, K., Morita, H., Hoshi, M.: Coding of ordered trees. In: Proceedings of the 2000 IEEE International Symposium on Information Theory, p. 15 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. Kobayashi
  • H. Morita
  • M. Hoshi

There are no affiliations available

Personalised recommendations