Lower Bounds for Divergence in the Central Limit Theorem

  • Peter Harremoës
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


A method for finding asymptotic lower bounds on information divergence is developed and used to determine the rate of convergence in the Central Limit Theorem.


Central Limit Theorem Fisher Information Exponential Family Hermite Polynomial Central Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amari, S.I.: Information geometry on hierarchy of probability distributions. IEEE Trans. Inform. Theory 47, 1701–1711 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991)MATHCrossRefGoogle Scholar
  3. 3.
    Feller, W.: An Introduction to Probability Theory and its Applications, 2nd edn., vol. 2. Wiley, New York (1971)MATHGoogle Scholar
  4. 4.
    Gupta, A.K., Móri, T.F., Székely, G.J.: Testing for Poissonity-normality vs. other infinite divisibility. Stat. Prabab. Letters 19, 245–248 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Harremoës, P.: Convergence to the Poisson distribution in information divergence, Technical Report 2, Mathematical department, University of Copenhagen (2003)Google Scholar
  6. 6.
    Jaynes, E.T.: Information theory and statistical mechanics, I and II. Physical Reviews 106 and 108, 620–630, 171–190 (1957)Google Scholar
  7. 7.
    Johnson, O., Barron, A.: Fisher information inequalities and the central limit theorem (preprint, 2001)Google Scholar
  8. 8.
    Klaassen, C.A.J., Mokveld, P.J., van Es, B.: Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions. Statistical and Probability Letters 50(2), 131–135 (2000)MATHCrossRefGoogle Scholar
  9. 9.
    Kondratenko, A.E.: The relation between a rate of convergence of moments of normed sums and the Chebyshev-Hermite moments. Theory Probab. Appl. 46(2), 352–355 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mayer-Wolf, E.: The Cramér-Rao functional and limiting laws. Ann. of Probab. 18, 840–850 (1990)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pearson, K.: Mathematical contributions to the theory of evolution, xix; second supplement to a memoir on skew variation. Philos. Trans. Roy. Soc. London Ser. A 216, 257–429 (1916)Google Scholar
  12. 12.
    Rohatgi, V.K., Székely, G.J.: Sharp inequalities between skewness and kurtosis. Statist. Probab. Lett. 8, 197–299 (1989)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Topsøe, F.: Information theoretical optimization techniques. Kybernetika 15(1), 8–27 (1979)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Harremoës

There are no affiliations available

Personalised recommendations