Advertisement

Correlation Inequalities in Function Spaces

  • R. Ahlswede
  • V. Blinovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)

Abstract

We give a condition for a Borel measure on R [0,1] which is sufficient for the validity of an AD-type correlation inequality in the function space.

Keywords

Probability Measure Function Space Distributive Lattice Equal Length Wiener Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlswede, R., Daykin, D.: An inequality for weights of two families of sets, their unions and intersections, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 93, 183–185 (1979)Google Scholar
  2. 2.
    Karlin, S., Rinott, Y.: Classes of orderings of measures and related correlation inequalities, I. Multivariate Totally Positive Distributions, Journal of Multivariate Analysis 10, 467–498 (1980)MATHMathSciNetGoogle Scholar
  3. 3.
    Kemperman, J.: On the FKG inequality for measures in a partially ordered space. Indag. Math. 39, 313–331 (1977)MathSciNetGoogle Scholar
  4. 4.
    Birkhoff, G.: Lattice Theory, Providence, RI (1967)Google Scholar
  5. 5.
    Doob, J.: Stochastic Processes. Wiley, New York (1967)Google Scholar
  6. 6.
    Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Preston, C.: A generalization of the FKG inequalities. Comm. Math. Phys. 36, 233–241 (1974)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • V. Blinovsky
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2.Russian Academy of Sciences Institute of Problems of Information TransmissionMoscowRussia

Personalised recommendations