Advertisement

On Logarithmically Asymptotically Optimal Hypothesis Testing for Arbitrarily Varying Sources with Side Information

  • R. Ahlswede
  • Ella Aloyan
  • E. Haroutunian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)

Abstract

The asymptotic interdependence of the error probabilities exponents (reliabilities) in optimal hypotheses testing is studied for arbitrarily varying sources with state sequence known to the statistician. The case when states are not known to the decision maker was studied by Fu and Shen.

Keywords

Conditional Divergence State Sequence Side Information Optimal Test Conditional Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlswede, R.: Coloring hypergraphs: a new approach to multi-user source coding, I and II. J. Combin. Inform. System Sciences 4(1), 75–115 (1979); 5(2), 220–269 (1980)Google Scholar
  2. 2.
    Fu, F.-W., Shen, S.-Y.: Hypothesis testing for arbitrarily varying sources with exponential-type constraint. IEEE Trans. Inform. Theory 44(2), 892–895 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic press, New York (1981)MATHGoogle Scholar
  4. 4.
    Hoeffding, W.: Asymptotically optimal tests for multinomial distributions. Ann. Math. Stat. 36, 369–401 (1965)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Csiszár, I., Longo, G.: On the error exponent for source coding and for testing simple statistical hypotheses. Studia Sc. Math. Hungarica 6, 181–191 (1971)Google Scholar
  6. 6.
    Tusnady, G.: On asymptotically optimal tests. Ann. Statist. 5(2), 385–393 (1977)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Longo, G., Sgarro, A.: The error exponent for the testing of simple statistical hypotheses, a combinatorial approach. J. Combin. Inform. System Sciences 5(1), 58–67 (1980)MATHMathSciNetGoogle Scholar
  8. 8.
    Birgé, L.: Vitesse maximales de décroissance des erreurs et tests optimaux associés, Z. Wahrsch. verw. Gebiete 55, 261–273 (1981)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Haroutunian, E.A.: Logarithmically asymptotically optimal testing of multiple statistical hypotheses. Probl. Control and Inform. Theory 19(5–6), 413–421 (1990)MATHMathSciNetGoogle Scholar
  10. 10.
    Ahlswede, R., Haroutunian, E.: On logarithmically asymptotically optimal testing of hypotheses and identification: research program, examples and partial results (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • Ella Aloyan
    • 2
  • E. Haroutunian
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2. 

Personalised recommendations