Estimating with Randomized Encoding the Joint Empirical Distribution in a Correlated Source

  • R. Ahlswede
  • Z. Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


In order to put the present model and our results into the right perspectives we describe first key steps in multiuser source coding theory.


Side Information Distortion Function Joint Type Communication Constraint Correlate Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R.: Channel capacities for list codes. J. Appl. Probability 10, 824–836 (1973)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ahlswede, R.: Coloring hypergraphs: A new approach to multi–user source coding, Part I. Journ. of Combinatorics, Information and System Sciences 4(1), 76–115 (1979); Part II, Journ. of Combinatorics, Information and System Sciences 5(3), 220–268 (1980)Google Scholar
  3. 3.
    Ahlswede, R., Burnashev, M.: On minimax estimation in the presence of side information about remote data. Ann. of Stat. 18(1), 141–171 (1990)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ahlswede, R., Csiszár, I.: Hypothesis testing under communication constraints. IEEE Trans. Inform. Theory 32(4), 533–543 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ahlswede, R., Csiszár, I.: To get a bit of information be as hard as to get full information. IEEE Trans. Inform. Theory 27, 398–408 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ahlswede, R., Dueck, G.: Identification via channels. IEEE Trans. Inform. Theory 35(1), 15–29 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ahlswede, R., Dueck, G.: Identification in the presence of feedback — a discovery of new capacity formulas. IEEE Trans. Inform. Theory 35(1), 30–39 (1989)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ahlswede, R., Körner, J.: Source coding with side information and a converse for degraded broadcast channels. IEEE Trans. Inf. Theory 21, 629–637 (1975)MATHCrossRefGoogle Scholar
  9. 9.
    Ahlswede, R., Yang, E., Zhang, Z.: Identification via compressed data. IEEE Trans. Inform. Theory 43(1), 22–37 (1997)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ahlswede, R., Zhang, Z.: Worst case estimation of permutation invariant functions and identification via compressed data, Preprint 97–005, SFB 343 Diskrete Strukturen in der Mathematik, Universität BielefeldGoogle Scholar
  11. 11.
    Berger, T.: Rate Distortion Theory. Prentice–Hall, Englewood Cliffs (1971)Google Scholar
  12. 12.
    Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic, New York (1981)MATHGoogle Scholar
  13. 13.
    Slepian, D., Wolf, J.K.: Noiseless coding of correlated information sources. IEEE Trans. Inform. Theory 19, 471–480 (1973)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wyner, A.D., Ziv, J.: The rate–distortion function for source coding with side information at the decoder. IEEE Trans. Inform. Theory 22, 1–10 (1976)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • Z. Zhang
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  2. 2. 

Personalised recommendations