Identification Via Quantum Channels in the Presence of Prior Correlation and Feedback

  • A. Winter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


Continuing our earlier work (quant-ph/0401060), we give two alternative proofs of the result that a noiseless qubit channel has identification capacity 2: the first is direct by a “maximal code with random extension” argument, the second is by showing that 1 bit of entanglement (which can be generated by transmitting 1 qubit) and negligible (quantum) communication has identification capacity 2. This generalizes a random hashing construction of Ahlswede and Dueck: that 1 shared random bit together with negligible communication has identification capacity 1.

We then apply these results to prove capacity formulas for various quantum feedback channels: passive classical feedback for quantum– classical channels, a feedback model for classical–quantum channels, and “coherent feedback” for general channels.


Error Probability Quantum Channel Feedback Strategy Classical Channel Bipartite State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R.: General theory of information transfer, General Theory of Information Transfer and Combinatorics, a Special issue of Discrete Mathematics (to appear)Google Scholar
  2. 2.
    Ahlswede, R., Balakirsky, V.B.: Identification under random processes. Probl. Inf. Transm. 32(1), 123–138 (1996)Google Scholar
  3. 3.
    Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography I: secret sharing. IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993); Common Randomness in information theory and cryptography II: common randomness capacity. IEEE Trans. Inf. Theory 44(1), 225–240 (1998)Google Scholar
  4. 4.
    Ahlswede, R., Dueck, G.: Identification via channels. IEEE Trans. Inf. Theory 35(1), 15–29 (1989)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Ahlswede, R., Dueck, G.: Identification in the presence of feedback — a discovery of new capacity formulas. IEEE Trans. Inf. Theory 35(1), 30–36 (1989)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Ahlswede, R., Winter, A.: Strong converse for identification via quantum channels. IEEE Trans. Inf. Theory 48(3), 569–579 (2003); Addendum. Ibid 49(1), 346 (2003)Google Scholar
  7. 7.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote preparation of quantum states, e–print, quant-ph/0307100 (2003)Google Scholar
  9. 9.
    Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Randomizing quantum states: constructions and applications, e–print quant-ph/0307104 (2003)Google Scholar
  10. 10.
    Bowen, G.: Quantum feedback channels, e–print, quant-ph/0209076 (2002)Google Scholar
  11. 11.
    Bowen, G., Nagarajan, R.: On feedback and the classical capacity of a noisy quantum channel, e–print, quant-ph/0305176 (2003)Google Scholar
  12. 12.
    Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states, e–print, quant-ph/0306078 (2003)Google Scholar
  13. 13.
    Devetak, I., Winter, A.: Relating quantum privacy and quantum coherence: an operational approach, e–print, quant-ph/0307053 (2003)Google Scholar
  14. 14.
    Devetak, I., Harrow, A.W., Winter, A.: A family of quantum protocols, e–print, quant-ph/0308044 (2003)Google Scholar
  15. 15.
    Fujiwara, A., Nagaoka, H.: Operational capacity and pseudoclassicality of a quantum channel. IEEE Trans. Inf. Theory 44(3), 1071–1086 (1998)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Han, T.S., Verdú, S.: Approximation theory of output statistics. IEEE Trans. Inf. Theory 39(3), 752–772 (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Harrow, A.W.: Coherent communication of classical messages. Phys. Rev. Lett. 92(9), 097902 (2004)Google Scholar
  18. 18.
    Harrow, A., Hayden, P., Leung, D.W.: Superdense coding of quantum states, e–print, quant-ph/0307221 (2003)Google Scholar
  19. 19.
    Holevo, A.S.: Problems in the mathematical theory of quantum communication channels. Rep. Math. Phys. 12(2), 273–278 (1977)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44(1), 269–273 (1998)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)CrossRefMATHGoogle Scholar
  22. 22.
    Kleinewächter, C.: On Identification. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 62–83. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Kuperberg, G.: The capacity of hybrid quantum memory. IEEE Trans. Inf. Theory 49(6), 1465–1473 (2003)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Löber, P.: Quantum channels and simultaneous ID coding, Dissertation, Universität Bielefeld, Bielefeld, Germany (1999), Available as e–print quant-ph/9907019Google Scholar
  25. 25.
    Lubkin, E.: Entropy of an n–system from its correlation with a k–reservoir. J. Math. Phys. 19, 1028–1031 (1978)CrossRefMATHGoogle Scholar
  26. 26.
    Page, D.: Average entropy of a subsystem. Phys. Rev. Lett. 71(9), 1291–1294 (1993)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Ogawa, T., Nagaoka, H.: Strong converse to the quantum channel coding theorem. IEEE Trans. Inf. Theory 45(7), 2486–2489 (1999)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)CrossRefGoogle Scholar
  29. 29.
    Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 379–423, 623–656 (1948)Google Scholar
  30. 30.
    Shor, P.W.: Equivalence of additivity questions in quantum information theory. Comm. Math. Phys. 246(3), 453–472 (2004)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Steinberg, Y., Merhav, N.: Identification in the presence of side information with applications to watermarking. IEEE Trans. Inf. Theory 47(4), 1410–1422 (2001)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Winter, A.: Quantum and classical message identification via quantum channels, e–print, quant-ph/0401060 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Winter

There are no affiliations available

Personalised recommendations