Universal Sets of Quantum Information Processing Primitives and Their Optimal Use

  • J. Gruska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


This paper considers several concepts of universality in quantum information processing and deals with various (sometimes surprising) universal sets of quantum primitives as well as with their optimal use.


Quantum Information Processing Quantum Circuit Quantum Gate CNOT Gate Bell Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M., DeMarrais, J., Huang, M.-D.A.: Quantum computability. SIAM Journal of Computing 26(5), 1524–1540 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aharonov, D.: A simple proof that Toffoli and Hadamard are quantum universal, quant-ph/0301040 (2003)Google Scholar
  3. 3.
    Aho, A.V., Svore, K.M.: Computing quantum circuits using the palindrom transformation, quant-ph/0311008 (2003)Google Scholar
  4. 4.
    Barenco, A.: A universal two-bit gate for quantum computation. Proceedings of Royal Society London A 449, 679–683 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.W., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates of quantum computation. Physical Review A 52(5), 3457–3467 (1995)CrossRefGoogle Scholar
  6. 6.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of 25th ACM STOC, pp. 11–20 (1993)Google Scholar
  7. 7.
    Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: On universal and fault-tolerant quantum computing, quant-ph/9906054 (1999)Google Scholar
  8. 8.
    Bravyi, S., Kitaev, A.: Universal quantum computation based on a magic state distillation, quant-ph/0403025 (2004)Google Scholar
  9. 9.
    Bremner, M.J., Dodd, J.L., Nielsen, M.A., Bacon, D.: Fungible dynamics: there are only two types of entangling multiple-qubit interactions, quant-ph/0307148 (2003)Google Scholar
  10. 10.
    Brylinski, J.-L., Brylinski, R.: Universal quantum gates, quant-ph/0108062 (2001)Google Scholar
  11. 11.
    Childs, A.M., Haselgrove, H.L., Nielsen, M.A.: Lower bounds on the complexity of simulating quantum gates, quant-ph/0307190 (2003)Google Scholar
  12. 12.
    Deutsch, D.: Quantum computational networks. Proceedings of Royal Society of London A 425, 73–90 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Deutsch, D., Barenco, A., Ekert, A.K.: Universality in quantum computation. Proceedings of Royal Society London A 449, 669–677 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gottesman, D.: The Heisenberg representation of quantum computers, quant-ph/9807006 (1998)Google Scholar
  15. 15.
    Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999-2004); See also additions and updatings of the book,
  16. 16.
    Gruska, J.: Quantum entanglement as a new quantum information processing resource. New Generation Computing 21, 279–295 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Hsieh, M., Kempe, J., Myrgren, S., Whaley, K.B.: An explicit universal gate-set for exchange-only quantum computation, quant-ph/0309002 (2003)Google Scholar
  18. 18.
    Iwama, K., Yamashita, S.: Transformation rules for CNOT-based quantum circuits and their applications. New generation computing 21(4), 297–318 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Kauffman, L.H., Lomonaco, S.J.: Braiding operators are universal quantum gates, quant-ph/0401090 (2004)Google Scholar
  20. 20.
    Khaneja, N., Glaser, S.J.: Cartan decomposition of SU(2n), constructive controllability of spin systems and universal quantum computing, quant-ph/0010100 (2000)Google Scholar
  21. 21.
    Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and quantum computation, American Mathematical Society (2002)Google Scholar
  22. 22.
    Kitaev, A.: Quantum Computations: Algorithms and Error Correction. Russian Mathematical Surwey 52, 1191–1249 (1997)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Knill, E., Laflamme, R., Zurek, W.H.: Resilent quantum computation: error models and thresholds. Proceedings of the Royal Society of London, Series A 454, 365–384 (1998)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Knill, E., Laflamme, R., Zurek, W.H.: Accuracy threshold for quantum computation, quant-ph/9611025 (1998)Google Scholar
  25. 25.
    Leung, D.W.: Two-qubit projective measurements are universal for quantum computation, quant-ph/0111077 (2001)Google Scholar
  26. 26.
    Leung, D.W.: Quantum computations by measurements, quant-ph/0310189 (2003)Google Scholar
  27. 27.
    Leung, D.W., Chuang, I.L., Yamahuchi, F., Yamamoto, Y.: Efficient implementation of selective recoupling in heteronuclear spin systems using Hadamard matrices, quant-ph/9904100 (1999)Google Scholar
  28. 28.
    Lloyd, S.: Almost any quantum gate is universal. Physical Review Letters 75, 346–349 (1995)CrossRefGoogle Scholar
  29. 29.
    Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states and optimization of quantum computation, quant-ph/0002045 (2000)Google Scholar
  30. 30.
    Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Universal quantum computation, quant-ph/0404089 (2004)Google Scholar
  31. 31.
    Nielsen, M.A.: Universal quantum computation using only projective measurements, quantum memory and preparation of the 0 state, quant-ph/0108020 (2001)Google Scholar
  32. 32.
    Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays, quant-ph/9703032 (1997)Google Scholar
  33. 33.
    Patel, K.N., Markov, I.L., Hayes, J.P.: Efficient synthesis of linear reversible circuits, quant-ph/0302002 (2003)Google Scholar
  34. 34.
    Perdrix, S.: State transfer instead of teleportation in measurement-based quantum computation, quant-ph/0402204 (2004)Google Scholar
  35. 35.
    Perdrix, S., Jorrand, P.: Measurement-based quantum Turing machines and questions of universalities, quant-ph/0402156 (2004)Google Scholar
  36. 36.
    Raussendorf, R., Briegel, H.J.: Quantum computing by measurements only. Phys. Rev. Lett. 86 (2004)Google Scholar
  37. 37.
    Rudolph, T., Grover, L.: A 2 rebit gate universal for quantum computing, quant-ph/0210087 (2002)Google Scholar
  38. 38.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Recognizing small-circuit structure in two-qubit operators and timing Hamiltonians to compute controlled-not gates, quant-ph/0308045 (2003)Google Scholar
  39. 39.
    Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit cnot-based circuits, quant-ph/0308033 (2003a)Google Scholar
  40. 40.
    Shende, V.V., Prasard, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits, quant-ph/0207001 (2002)Google Scholar
  41. 41.
    Shi, Y.: Both Toffoli and controlled-not need little help to do universal computation, quant-ph/0205115 (2002)Google Scholar
  42. 42.
    Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th IEEE FOCS, pp. 56–65 (1996)Google Scholar
  43. 43.
    Steane, A.M.: Error correcting codes in quantum theory. Physics Review Letters 77(5), 793–797 (1996)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Stepanenko, D., Bonesteel, N.E.: Universal quantum computation through control of spin-orbit coupling, quant-ph/0403023 (2004)Google Scholar
  45. 45.
    Toffoli, T.: Reversible computing, Tech. Memo MIT/LCS/TM-151, MIT Lab for CS (1980)Google Scholar
  46. 46.
    Tucci, R.R.: A rudimentary quantum compiler, quant-ph/9902062 (1999)Google Scholar
  47. 47.
    Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates, quant-ph/0312218 (2003)Google Scholar
  48. 48.
    Vatan, F., Williams, C.: Optimal realization of a general two-qubit quantum gate, quant-ph/0308006 (2003)Google Scholar
  49. 49.
    Vatan, F., Williams, C.: Realization of a general three-qubit quantum gate, quant-ph/0401178 (2004)Google Scholar
  50. 50.
    Vidal, G., Dawson, C.M.: A universal quantum circuit for two-qubit transformations with three cnot gates, quant-ph/0307177 (2003)Google Scholar
  51. 51.
    Wang, X., Sorensen, A., Molmer, K.: Multi-bit gates for quantum computing, quant-ph/0012055 (2000)Google Scholar
  52. 52.
    Yung, M.-H., Leung, D.W., Bose, S.: An exact effective two-qubit gate in a chain of three qubits, quant-ph/0312105 (2003)Google Scholar
  53. 53.
    Zhang, J., Vala, J., Sastry, S., Whaley, B.: Optimal quantum circuit synthesis from controlled-u gates, quant-ph/0308167 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Gruska

There are no affiliations available

Personalised recommendations