Quantum Information Transfer from One System to Another One

  • A. Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


The topics of the paper are: a) Anti-linear maps governing EPR tasks in the absence of distinguished reference bases. b) Imperfect quantum teleportation and its composition rule. c) Quantum teleportation by distributed measurements. d) Remarks on EPR with an arbitrary mixed state, and triggered by a Lüders measurement.


Hilbert Space Density Operator Quantum Teleportation Polar Decomposition Composition Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)MATHCrossRefGoogle Scholar
  2. 2.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 35, 807–812, 823–828, 844–849 (1935)Google Scholar
  3. 3.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publ., Dortrecht (1993)MATHGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bennett, C.H., Wiesner, S.J.: Communication via one– and two–particle operators on Einstein– Podolski–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Birckhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. of Math. 37, 823–843 (1936)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hellwig, K.-E., Kraus, K.: Formal Description of Measurements in Local Quantum Field Theory. Phys. Rev. D 1, 566–571 (1970)CrossRefGoogle Scholar
  9. 9.
    Finkelstein, J.: Property Attribution and the Projection Postulate in Relativistic Quantum Theory. Phys. Lett. A 278, 19–24 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Zbinden, B., Brendel, J., Gisin, N., Tittel, W.: Experimental test of non-local quantum correlations in relativistic configurations. Phys. Rev. Lett. 84, 4737–4740 (2000)CrossRefGoogle Scholar
  11. 11.
    For the discussion of that point of view I am indebted to B. Crell, LeipzigGoogle Scholar
  12. 12.
    Uhlmann, A.: Quantum channels of the Einstein-Podolski-Rosen kind. In: Borowiec, A., Cegla, W., Jancewicz, B., Karwowski, W. (eds.) Proceedings of the XII Max Born Symposium FINE DE SIECLE, Wroclaw 1998. Lecture notes in physics, vol. 539, pp. 93–105. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Uhlmann, A.: Operators and maps affiliated to EPR channels. In: Doebner, H.-D., Ali, S.T., Keyl, M., Werner, R.F. (eds.) Trends in Quantum Mechanics, pp. 138–145. World Scientific, Singapore (2000)Google Scholar
  14. 14.
    Aharonov, Y., Albert, D.Z.: Can we make sense out of the measurement process in relativistic quantum mechanics? Phys. Rev. D 24, 359–370 (1981)CrossRefGoogle Scholar
  15. 15.
    Sorkin, R.D.: Impossible measurements on quantum fields. In: Hu, B.-L., Jacobson, T.A. (eds.) Directions in General Relativity, vol. 2, pp. 293–305. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  16. 16.
    Beckman, D., Gottesman, D., Nielsen, M.N., Preskill, J.: Causal and localizable quantum operations. Phys. Rev. A 64 (2001)Google Scholar
  17. 17.
    Vaidman, L.: Instantaneous measurement of non-local variables. Phys. Rev. Lett. 90 (2003)Google Scholar
  18. 18.
    Bennett, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Werner, R.F.: All teleportation and dense coding schemes. In: Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.) The Physics of Quantum Information. Springer, Heidelberg (2000)Google Scholar
  20. 20.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)CrossRefGoogle Scholar
  21. 21.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle schemes for entanglement swapping. Phys. Rev. A 57, 822 (1998)CrossRefGoogle Scholar
  22. 22.
    Ohya, M.: Note on quantum probability. Nuovo Cim. 38, 402–406 (1983)MathSciNetGoogle Scholar
  23. 23.
    Belavkin, V.P., Ohya: Entanglement and compound states in quantum information theory, quant-ph/0004069Google Scholar
  24. 24.
    Fivel, D.I.: Remarkable Phase Oscillations Appearing in the Lattice Dynamics of Einstein-Podolsky-Rosen States. Phys. Rev. Lett. 74, 835–838 (1995)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Brassard, G.: Teleportation as Quantum Computation. Physica D 120, 43–47 (1998)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Albeverio, S., Fei, S.-M.: Teleportation of general finite dimensional quantum systems. Phys. Lett. 276, 8–11 (2000)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21–25 (1996)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mor, T., Horodecki, P.: Teleportation via generalized measurements, and conclusive teleportation, e-print, quant-ph/9906039Google Scholar
  29. 29.
    Trump, C., Bruß, D., Lewenstein, M.: Realistic teleportation with linear optical elements. Phys. Lett. A 279, 7–11 (2001)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366–1369 (2001)CrossRefGoogle Scholar
  31. 31.
    Rehacek, J., Hradil, Z., Fiurasek, J., Bruckner, C.: Designing optimal CP maps for quantum teleportation. Phys. Rev. A 64 (2001)Google Scholar
  32. 32.
    Haag, R.: Local Quantum Physics. Springer, Heidelberg (1993)Google Scholar
  33. 33.
    Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. d. Physik 8, 322–328 (1951)MATHGoogle Scholar
  34. 34.
    Jamiolkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction and quasi-distillation, e-print, quant-ph/9807091 (1998)Google Scholar
  36. 36.
    Terhal, B.M.: Positive maps for bound entangled states based on unextendible product bases. Linear Algebra Appl. 323, 61–73 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Uhlmann

There are no affiliations available

Personalised recommendations