Transmission, Identification and Common Randomness Capacities for Wire-Tape Channels with Secure Feedback from the Decoder

  • R. Ahlswede
  • N. Cai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


We analyze wire-tape channels with secure feedback from the legitimate receiver. We present a lower bound on the transmission capacity (Theorem 1), which we conjecture to be tight and which is proved to be tight (Corollary 1) for Wyner’s original (degraded) wire-tape channel and also for the reversely degraded wire-tape channel for which the legitimate receiver gets a degraded version from the enemy (Corollary 2).

Somewhat surprisingly we completely determine the capacities of secure common randomness (Theorem 2) and secure identification (Theorem 3 and Corollary 3). Unlike for the DMC, these quantities are different here, because identification is linked to non-secure common randomness.


Transmission Capacity Secret Sharing Scheme Legal User Input Alphabet Security Criterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R.: Universal coding. In: The 7th Hawai International Conference on System Science (January 1974); Published in [A21]Google Scholar
  2. 2.
    Ahlswede, R.: Coloring hypergraphs: A new approach to multi-user source coding, Part I. J. Comb. Inform. Syst. Sci. 4(1), 76–115 (1979); Part II 5(3), 220–268 (1980)Google Scholar
  3. 3.
    Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography, Part I: Secret sharing. IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993); Part II: CR capacity 44(1), 55–62 (1998)Google Scholar
  4. 4.
    Ahlswede, R., Dueck, G.: Identification via channels. IEEE Trans. Inform. Theory 35(1), 15–29 (1989)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ahlswede, R., Dueck, G.: Identification in the presence of feedback – a discovery of new capacity formulas. IEEE Trans. Inform. Theory 35(1), 30–39 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ahlswede, R.: General theory of information transfer, Preprint 97–118, SFB 343 Diskrete Strukturen in der Mathematik, Universität Bielefeld (1997); General theory of information transfer: updated, General Theory of Information Transfer and Combinatorics, a Special Issue of Discrete Applied Mathematics (to appear)Google Scholar
  7. 7.
    Ahlswede, R., Zhang, Z.: New directions in the theory of identification via channels. IEEE Trans. Inform. Theory 41(4), 1040–1050 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Burnashev, M.: On identification capacity of infinite alphabets or continuous time. IEEE Trans. Inform. Theory 46, 2407–2414 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cai, N., Lam, K.-Y.: On identification secret sharing scheme. Inform. and Comp. 184, 298–310 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Csiszár, I.: Almost independence and secrecy capacity. Probl. Inform. Trans. 32, 40–47 (1996)Google Scholar
  11. 11.
    Csiszár, I., Körner, J.: Broadcast channel with confidential message. IEEE Trans. Inform. Theory 24, 339–348 (1978)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Csiszár, I., Narayan, P.: Common randomness and secret key generation with a helper. IEEE Trans. Inform. Theory 46(2), 344–366 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shannon, C.E.: A mathematical theory of communication. Bell. Sys. Tech. J. 27, 379–423 (1948)MATHMathSciNetGoogle Scholar
  14. 14.
    Steinberg, Y.: New converses in the theory of identification via channels. IEEE Trans. Inform. Theory 44, 984–998 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Venkatesh, S., Anantharam, V.: The common randomness capacity of a network of discrete memoryless channels. IEEE Trans. Inform. Theory 46, 367–387 (2000)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wyner, A.D.: The wiretape channel. Bell. Sys. Tech. J. 54, 1355–1387 (1975)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • N. Cai
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations