Codes with the Identifiable Parent Property and the Multiple-Access Channel

  • R. Ahlswede
  • N. Cai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)


We begin with

I. The identifiable parent property and some first results about it If \({\mathcal C}\) is a q–ary code of length n and a n and b n are two codewords, then c n is called a descendant of a n and b n if c t ∈{a t , b t } for t=1,...,n. We are interested in codes \({\mathcal C}\) with the property that, given any descendant c n , one can always identify at least one of the ‘parent’ codewords in \({\mathcal C}\). We study bounds on F(n,q), the maximal cardinality of a code \({\mathcal C}\) with this property, which we call the identifiable parent property. Such codes play a role in schemes that protect against piracy of software.


Access Channel Stochastic Matrix Parent Property Maximal Cardinality Parent Pair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R.: Multi–way communication channels. In: Proceedings of 2nd International Symposium on Information Theory, Thakadsor, Armenian SSR, Akademiai Kiado, Budapest, September 1971, pp. 23–52 (1973)Google Scholar
  2. 2.
    Ahlswede, R.: The capacity region of a channel with two senders and two receivers. Ann. Probability 2(5), 805–814 (1974)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ahlswede, R.: An elementary proof of the strong converse theorem for the multiple–access channel. J. Combinatorics, Information and System Sciences 7(3), 216–230 (1982)MATHMathSciNetGoogle Scholar
  4. 4.
    Ahlswede, R., Cai, N.: Arbitrarily varying multiple–access channels, Part I. Ericson’s symmetrizability is adequate, Gubner’s conjecture is true. IEEE Trans. Inf. Theory 45(2), 742–749 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ahlswede, R., Dueck, G.: Every bad code has a good subcode: a local converse to the coding theorem. Z. Wahrscheinlichkeitstheorie und verw. Geb. 34, 179–182 (1976)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ahlswede, R., Gács, P., K”orner, J.: Bounds on conditional probabilities with applications in multiuser communication. Z. Wahrscheinlichkeitstheorie und verw. Geb. 34, 157–177 (1976)MATHCrossRefGoogle Scholar
  7. 7.
    Csiszár, I., K”orner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic Press, London (1981)MATHGoogle Scholar
  8. 8.
    Dueck, G.: The strong converse to the coding theorem for the multiple–access channel. J. Combinatorics, Information & System Science, 187–196 (1981)Google Scholar
  9. 9.
    Hollmann, H.D.L., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.G.M.: On codes with the identifiable parent property. J. Combin. Theory Ser. A 82(2), 121–133 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K”orner, J., Marton, K.: Images of a set via two channels and their role in multi–user comunication. IEEE Transactions on Information Theory 23, 751–761 (1977)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Viemeister, J.: Die Theorie Selektierender Versuche und Multiple–Access–Kan”ale, Diplomarbeit, Universit”at Bielefeld (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Ahlswede
    • 1
  • N. Cai
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations