Advertisement

Bounds of E-Capacity for Multiple-Access Channel with Random Parameter

  • M. E. Haroutunian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4123)

Abstract

The discrete memoryless multiple-access channel with random parameter is investigated. Various situations, when the state of the channel is known or unknown on the encoders and decoder, are considered. Some bounds of E-capacity and capacity regions for average error probability are obtained.

Keywords

Error Probability Capacity Region State Sequence Random Parameter Random Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlswede, R.: Multi-way communication channels. In: 2nd Intern. Sympos. Inform. Theory. Tsahkadsor, Armenia, 1971, Budapest, Akad. Kiado, pp. 23–52 (1973)Google Scholar
  2. 2.
    Ahlswede, R.: The capacity region of a channel with two senders and two receivers. Annals Probability 2(2), 805–814 (1974)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Haroutunian, E.A., Haroutunian, M.E., Avetissian, A.E.: Multiple-access channel achievable rates region and reliability. Izvestiya Akademii Nauk Armenii, Matematika 27(5), 51–68 (1992)Google Scholar
  4. 4.
    Haroutunian, M.E.: On E-capacity region of multiple-access channel (in Russian). Izvestiya Akademii Nauk Armenii, Matematika 38(1), 3–22 (2003)Google Scholar
  5. 5.
    Gallager, R.G.: A perspective on multiaccess channels. IEEE Trans. Inform. Theory 31(1), 124–142 (1985)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dyachkov, A.G.: Random constant composition codes for multiple access channels. Problems of Control and Inform. Theory 13(6), 357–369 (1984)MathSciNetGoogle Scholar
  7. 7.
    Pokorny, J., Wallmeier, H.M.: Random coding bound and codes produced by permutations for the multiple-access channel. IEEE Trans. Inform. Theory 31, 741–750 (1985)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Liu, Y.S., Hughes, B.L.: A new universal coding bound for the multiple-access channel. IEEE Trans. Inform. Theory 42, 376–386 (1996)MATHCrossRefGoogle Scholar
  9. 9.
    Gelfand, S.I., Pinsker, M.S.: Coding for channel with random parameters. Problems of Control and Inform. Theory 8(1), 19–31 (1980)MathSciNetGoogle Scholar
  10. 10.
    Haroutunian, E.A., Haroutunian, M.E.: E-capacity upper bound for channel with random parameter. Problems of Control and Information Theory 17(2), 99–105 (1988)MathSciNetGoogle Scholar
  11. 11.
    Haroutunian, M.E.: Bounds of E-capacity for the channel with random parameter. Problemi Peredachi Informatsii (in Russian) 27(1), 14–23 (1991)MATHGoogle Scholar
  12. 12.
    Haroutunian, M.E.: New bounds for E-capacities of arbitrarily varying channel and channel with random parameter. Trans. IIAP NAS RA and YSU, Mathematical Problems of Computer sciences 22, 44–59 (2001)Google Scholar
  13. 13.
    Jahn, J.: Coding of arbitrarily varying multiuser channels. IEEE Trans. Inform. Theory 27(2), 212–226 (1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ahlswede, R.: Arbitrarily varying channels with states sequence known to the sender. IEEE Trans. Inform. Theory 32(5), 621–629 (1986)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Ahlswede, R., Cai, N.: Arbitrarily varying multiple access channels, Part 1. IEEE Trans. Inform. Theory 45(2), 742–749 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ahlswede, R., Cai, N.: Arbitrarily varying multiple access channels, Part 2. IEEE Trans. Inform. Theory 45(2), 749–756 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Das, A., Narayan, P.: Capacities of time-varying multiple-access channels with side information. IEEE Transactions on Information Theory 48(1), 4–25 (2002)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pinsker, M.S.: Multi-user channels. In: II Joint Swedish-Soviet Intern. workshop on Inform. Theory, Granna, Sweden, pp. 160–165 (1985)Google Scholar
  19. 19.
    Csiszár, I., Körner, J.: Information Theory. Coding Theorems for Discrete Memoryless Systems, Budapest, Akad. Kiado (1981)Google Scholar
  20. 20.
    Csiszár, I.: The method of types. IEEE Trans. Inform. Theory 44, 2505–2523 (1998)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. E. Haroutunian

There are no affiliations available

Personalised recommendations